i
.

v 1971

Januar

1 Report TR-144

ica

echn

T

GR~21-002-206

y

Sy
S
ki

-
-

ign

y System Des

P
ES

tual Memo

1T

AV

Ray Pardo

s

iver

01

o

o

.

-
D
.».\\

T
N

o

7

.

.

: \\ﬁww

.

-
e
.
%&mw»w&»w Sl

e

L .

e

Technical Report TR-144 January 1971
NGR~-21-002-206

A Virtual Memory System Design

by

Oliver Ray Pardo

This research was supported in part by Grant NGR 21-002-206
from the National Aeronautics and Space Administration to the
Computer Science Center of the University of Maryland.

Abstract

This paper describes a virtual memory management system based
upon the working set model that is suitable for microprogramming. As in-
trocuction, several current systems employing virtual memory are briefly
described, and the working set strategy, the task scheduling/memory manage-
ment algorithm, and the concept of a paging drum are introduced. The paper
then presents, in detail, the hardware and software components of a virtual
memory management system. The hardware components which are described in
CDL include the main memory, the translation memory, the page table memory,
and the paging drum channel. The software components are described in
ALGOL and interfaced with the hardware by defining registers as global var-
iabtles and referring to hardware sequences through procedure calls. The
software description includes complete description of the addressing mechan-
ism, memory management, and task scheduling. Memory management is enhanced
by the use of a page-table memory that posts the current status of each

physical page.

N

(W]

w

TABLE OF CONTENTS

Introduction
A Virtual Memory Paging Machine

Dynamic Storage Allocation Systems

Placement and Replacement Strategies - The Working Set
A Memory Management System

The Paging Drum

Concurrent Processes

Do N NN
VW N

Hardware Description

Main Memory Subsystem
Translation Memory Subsystem
Page Table Subsystem

Paging Drum Channel Subsystem
Interrupts and the CPU

Wi w
Ut B~ w =

System Description

4.1 Data Structures

4.2 Primitive Procedures and Global Variables

4.3 Memory Management - Task Scheduling Algorithm

Discussion

Feferences

1. INTRODUCTION

Storage allocation has been a major problem since the develcpment of
the first computers. Efficient use of processors requires fast access to
the data being processed. Program logic for the more complex programs together
with the program data require large memory storage. However, as memories
get larger (and more expensive) they become slower. Early solutions to the
problem were for the programmer to perform elaborate overlays of both program
and data in order to fit into a relatively small, fast memory.

In the early 1960's, a more satisfactory solution to the problem of

storage allocation was proposed. This solution, now known as virtual memory,

gives the programmer the illusion of a very large memory although the computer
may actually have a relatively small memory. This is achieved by drawing

the distinction between the address (or name) of a quantity (e.g., register)
and the actual location. The programmer programs as if his memory space (vir-

tual name space) is extremely large. The computer system provides a mechanism

for executing this program.

One mechanism, paging, is based upon the idea that although a program
may be very large in total size, only a portion of it is being processed at
any one time. Paging divides the program into equal sized blocks, called pages,
and provides a tramnslation mechanism for associating a virtual memory page with
an equal sized block of memory (figure 1-1). During instruction execution, each
virtual address is translated to a physical address before the actual memory
access is made. This translation consists of accessing a special table with
the virtual page address and obtaining the actual page address in memory from
the addressed table location. -

It is the responsibility of the computer system to move copies of the

VIRTUAL ADDRESS

PROCESSOR

MEMORY

i
PHYSICAL ADDRESS i

TABLE

H
t

Figure 1-1 A paging scheme

virtual memory to the main memory as it is needed (placement), to remove those
pages that are no longer needed out of memory (replacement), and to perform
the address translation. This function of the computer is called memory
management.

Besides the additional memory space afforded the programmer, this
concept of a virtual memory is ideal for a multi-programming computer systemn,
where several users (called tasks) share the systems facilities (e.g., processors,
memory, mass storage, etc.) concurrently. A program that is paged must halt
processing each time it references a virtual page that does not currently reside
in main memory and wait for it to be entered. In a multi-programmed environ-
ment, another task can be given control of the processor in the interim.

This paper presents a virtual memory management system for micro-
programming. The virtual memory system is based upon the working set model
reported by Denning [12]. The syStem‘is defined to exist in a multi-programmed
environment , the scheduling implementation of which is described in detail.
Section 2 introduces the topic of dynamic storage allocation, the working set
model, the memory management system, and the multi-programmed environment.
Section 3 presents the hardware subsystems upon which the implementation is
based. These are described in the Computer Design Language [5,6]. Section 4
presenté the scheduling system, described in ALGOL.

This paper is regarded as the first step in a microprogrammed imple-
mentation of the virtual memory management system described herein (under the

methodology described in [7]).

2. A VIRTUAL MEMORY PAGING MACHINE

The virtual memory paging machine presented here is primarily based
upon a number of articles written by Peter J. Denning [12, 13, 14] in which
he presents some detailed analysis into the problems of paging and segmenting
systems and suggests a solution, the working set strategy. This section first
introduces virtual memory systems in general and the working set model in

particular, and then presents an implementation of the working set strategy.

2.1 Dynamic Storage Allocation Systems

The system described in this paper was developed after studying
several of the existent paging and/or segmenting systems. A brief survey of a
number of these systems appears in Randell and Kuehner's paper [27]. Several
of the salient features are discussed below. The systems discussed are the
MULTICS GE 645 System, the IBM 360/67 system, and the RCA Spectra 70 Systems
(70/46 and 70/61).

The MULTICS System [11] employs a segmented addressing scheme with dy-
namic allocation implemented by paging. Addressing consists of the descriptor
base register (DBR), the generalized address, and two types of segments in
memory —— the descriptor segment and the information segment. The generalized
address consists of a segment number/word number pair. As shown in Figure 2-1,
the DBR points to the current descriptor segment, the segment number is used
to access the address of the information segment, and the word number is used
to locate the desired word. All segments are divided into pages and when any
segment is addressed, the hardware translation to the actual page is performed
transparent to the user. Paging is implemented by means of page tables in

main memory which provide for trapping in case a page is not present in main

segment number| word number

X y
descriptor information
segment segment
DBR -
i ———-————) y
- X . N
| e
i
i i
{ |
!
PURNE S RSO SHU——
] . e

Figure 2-1 MULTICS addressing (paging not shown)

memory. In order that references to page tables or descriptor segments may be
by-passed, a small associative memory is used. The process of addressing con-
sists of accessing the descriptor segment and the associative memory in parallel
for the address of the information segment word. If all segments are indeed
paged, and the associative memory does not contain the pagé address, then
the DBR points to a page table for the descriptor segment and each location
in the descriptor segment points to a page table for a particular information
segment. However, a special register contains the address of the current seg-
ment and only on inter—segment transfers must four main memory accesses be made.
Furthermore, in a large percentage of the cases, the address will exist in
the associative memory, requiring only an associative memory access and a main
MEMOTy aCcCess.

The IBM System 360-67 [18,20] employs a linearly segmented name space,
and the addressing mapping mechanism is as shown in Figure 2-2. Virtual
memory consists of 16 segments of 256 pages each. Each page consists of 4096
8-bit bytes. Each 24~bit address consists of a segment (s), page (p), and
word (W) part. To speed memory access an 8-word associative memory is used
that, according to the manual [20], "contains the most recent and/or most
frequently used page addresses." (If this statement means that the least
frequently referenced or least recently used address is always overlaid, it
can be shown to be false.) Addressing occurs sequentially, (a) the associative
memory is searched in parallel for the desired page, (b) if not found the seg-
ment table is accessed for the desired page table, and (¢) the absolute address
is located in the page table. It should be noted that this differs from the
MULTICS system, in which steps (a) and (b) occur in parallel. However, as the
associative search is accomplished in .15 micro-seconds, compared to ~1 micro-

second for main memory access, this may be considered to be of little importance,

segment table

T
s
b
A |, pese table

q |

virtual 3

address |

v e - o h L S
T e i physical
T L e address
s P | w e
i \\
f— . S ") A
- |
associative
memory
(match)

" Figure 2-2 IBM 360/67 addressing

Again, if the associative memory contains the address, then only one main
memory access must be made.

The RCA Spectra 70 System has two systems that employ paging, the
70/46 and 70/61. The Spectra 70/61 is an "enhanced" version of the 70/46.
The addressing mechanism is essentially the same, and therefore references to
both will be used [24,30,33]. Although it employs a 24-bit address (Figure
2-3), only 2 million bytes (8 segments x 64 pages/segment x 4096 bytes/page)
of virtaul memory are available. Each user is allowed 256 pages of virtaul
memory, pages O through 255. The system occupies pages 256 through 511 of
all users' virtual memory. The addressing is performed through a 512 entry

translation memory which has an 85 nanosecond access time. As a user task

t akes coﬂtr&l of the processor, his copy of the lower 256 translation memory
locations is loaded from main memory. At that point, all addressing occurs

at a speed of ~1 microsecond (85 nanoseconds for the translation memory plus
765 nanoseconds for the main memory [30]). When a task is removed from pro-
cessing, those translation memory locations that have been altered are stored
to main memory. The read-only memory contains the special subroutines that
perform the functions of (a) load translation memory (b) scan translation memory
and store, and (c¢) store translation memory. It should be noted that (a)

only the largest tasks would require all 256 translation memory locations be
loaded, and (b) the upper 256 translation memory locations are loaded only at
system load time. The system portion of the virtual memory contains the copies
of the translation memory, and all shared (re-entrant) code in addition to
usual system functions. Therefore, while sacrificing some time to the load-
ing and unloading of translation memory, all addressing involves only one

main memory access.

virtual address

S ———— physical address

l

A
Translation Memory
S-p
|
i
v
[» - ey
VI e mm
L

Figure 2-3 RCA Spectra 70/46 (70/61) addressing

19

Each translation memory location contains bits that indicate whether
the page is in memory, whether it has been referenced, whether it has been
changed (written into) since last being loaded, whether it is read-only, or
whether it is locked-in core. The addressing operation proceeds in several
steps:

(a) using the s-p portion of the logical address, access the translation

memory;

(b) check to see i1f the page is in core:

(c) if so, then set the reference bit and, if this is a store operation,
check to see if the write protect bit is off, and set the bit
indicating the page has been altered; if not, issue a page in-
terrupt, request the page be brought into main memory, unload
the translation memory, and begin processing the next task;

-(d) if part (c) is successful, form the actual address by concatenating

the physical page address with the w-portion of the logical address.

2.2 Placement and Replacement Strategies - The Working Set

Paging systems can be characterized by the methods with which they
make decisions to input or output pages from main memory. Demand Paging
refers to the method that only loads a page when it is referenced. Look-ghead
paging attempts to predict which pages will be referenced in the near future
and to load them before they are referenced. Although the latter method seems
attractive, simple algorithms that perform well for a general set of processes
have yet to be found [27]. The possibility of loading pages that may never be
referenced contradicts one of the central premises of the paging system, to
load only the set of pages that are to be used. For this reason, and that of

simplicity, the system described herein will employ demand paging for page entry.

11

Experience shows that most of the problems in paging systems lie in

the replacement strategy. If there are k tasks active, with Dys Dpseees,hy

pages in memory, and task j makes a reference to a page not in core, one of
k
two actions occur. If I n, < N, where N = total pages in memory, then space
i=1 * k .
exigts and the page is loaded. However, if I n, = N, then a decisiocn must
i=1
be made as to which page to remove. The obvious choice is to remove the

page that is least likely to be used next. The strategies for determining
the identity cf this page are many.
These strategies can be divided into those that would consider all

N pages likely candidates for removal (the global strategies) and these that

corisider only the nj pages of task j (the local strategies). When demand
paging is used, the task requesting a page will be suspended from processing,
until the request is fulfilled, requiring that other tasks be processed in
the interim. If a global strategy is used, it is possible that the page
removed may be requested by a subsequent task. The extension of this problem
is called thrashing [13], a condition in which the system is reduced to
swapping pages to and from main memory, and useful computation is reduced tc
zerc. Both the global and local strategies employ similar methcds for choes-
ing the page that is to be removed: least recently used, least frequently
used, etc. For further details on replacement strategies and the resulting
problems, the reader is referred to [2,13,23,24,27,28,29,31].

The solution chosen here, Denning's working set strategy [12,13], can

best be understood as an attempt to provide the ideal condition: always enough

room for the set of pages with which a task is working. If the pages refer-

enced by a task are monitored, then the current working set of a task is defined
e

as those pages referenced in the last T time units, where T is a fixed amount

of time for all tasks, called the working set parameter. If an active task

12

is defined as a task competing for the central processor (CPU), and the cardinal-

ity of the working set is Wi’ then the working set strategy is to allow only

those K tasks to become active whose working sets wl, W2’°"’Wk satisfy the
k

property W= L W, < N, where N is the total number of pages available. 1In
i=1

order to make this strategy workable, several questions must be answered:
(a) How is the working set measured?
(b) What value is chosen for the task that has no history (i.e.,
has not been processed for T time-units)?
(c) As the working set size appears to be dynamic, how are tasks
made active when their working set Wj satisfies the property

W+ Wj < N, and, conversely, which task is removed when W>N?

The system described in this paper presents a workable implementation of the
working set strategy and therefore provides solutions to these questions. A
similar implementation was made by RCA in the Spectra 70 series and is described
by Oppenheimer and Weizer [33]. As a final vote, it should be pointed out that
this strategy assures that thrashing will never occur between tasks, as there
will always be sufficient pages for each active process'’s working set (note

that a single active task could grow to include all of available core in an

active period and then thrash with itself--however, this is unlikely).

2.3 A Memory Management System

Describing a memory management system in any detail requires that
more be known of the host operating system than merely the addressing mechan-
ism. For example, to discuss demand paging requires some idea of what happens
(besides the passage of time) while the page is being loaded into memory; to
specify that several tasks are competing for processor time, issuing page re-

quests and, at the same time, releasing pages, raises the question of I/0O

13

scheduling. Therefore, the memory management system presented here will be
considered to be a part of a multi-programmed operating system. The task
scheduling, memory management, and mass storage subsystems will be presented
in detail.
The scheduling implementation for this computer is shown in Fig. 2-4
[12]. A series of tasks are ordered on a ready list, indicating they are to
be processed. As main memory space becomes available, the task with the high-
est priority (task 1) is assigned a time quantum, q; and entered into the
running list (a circular list). Each task on the running list is processed
for a burst of time B (Bfgi). At the end of the B seconds of process time
the task is returned to the end of the running queue, unless:
(1) the task's running time exceeds the assigned quantum time (tizgi),
in which case the task is placed back on the ready list and ti
is set to zero;
(2) the task is blocked, waiting for completion of another task (e.g.,
I/0 activity), in which case it is placed upon a blocked list
(and then returned to the ready list when it is unblocked);
(3) the task is completed, in which case the supervisor is notified;
(4) a page fault occurs, in which case the task incurs a wait period
while the page is entered into memory, and then is placed back

onto the rumning list.

The virtual memory described here is similar to the memory system em-—
ployed by the RCA Spectra 70-46 and 70/61. Each task has 2N pages of M
words each in its virtual memory space. However, only the first N pages are
available for the user programs as the last N pages always contain the system

(e.g., processors, tables, re-entrant programs). When a task takes control of

=
e

t > q,
i— 1

o e e o ne or e g

quantum runout

burst over

page fault

¥
1

¢
1
H
]
H
H
3
*

Process task i

for B second burst

exceeded workin
set size &

no pages avail

blocked |

complete |
v

i
!
i
|

14

g

b3
able

task 1 f Y
COMPLETE task 2 i
LIST) T ;
¥
page) BLOCKED
wait . LIST
SYSTEM TASK
RUNNING) unblocked
LIST £;40
R ’—‘L'——"' —— / £
task k ?
' READY %
1 T activate task i LIST %
L L |
g _d
t+ O
1
task enters
system
Figure 2-4 A scheduling implementation

15

the central processor (CPU) its virtual memory map is loaded into a special
trangslation memory. When a task loses control of the processor, those entries
of the translation memory that were altered are written to the task's buffer
area. All addressing that the task performs occurs through the translation
memory. If the page exists in memory, the address translation occurs, else

a page fault occurs (case 4 above).

Page are swapped in and out of core according to the working set
strategy. Pages are loaded to memory upon demand and attached to the request-
ing task. At this point they are active. Associated with each active page
in memory is a count of the amount of the task's processing time that has
elapsed since it was referenced. Every time a page is referenced the count
is reduced to 0. If a page is not referenced over the period of the burst B,
the count is increased. When this values becomes >t then the page is dis-
asgsociated from the task and becomes available. Available pages are of three
types:

(a) altered, requiring that the page be swapped out before being re-

used,

(b) queued for swap-out, because of (a), and

(c) immediately available.

Categories (a) and (b) may be one and the same in some implementations. The
reason for the distinction in this case will be explained later.

Every task's virtual memory exists in total on a mass storage device
called the paging drum. Only its working set exists within the main memory.
The paging drum concept is described in more detail in the section 2.4.

At this point, the working set principle will be discussed in relati?E

to the scheduling system in order to answer the questions raised in section

2.3. A user job, consisting of several tasks, is entered into the system. As

16

facilities become available tasks are entered into the ready list and:

(a) a task descriptor block is assigned;

(b) the task's pages are loaded to the paging drum, and the corres-

ponding drum addresses are loaded into the task descriptor block;

(c) the task is assigned a priority and an initial working set value.
In addition, the ready list contains tasks that have already begun prqcessing
and have either run—out their time quantum or are blocked, awaiting comple-
tion of another task. 1In any case these tasks retain the size of the working
set that they had when they were removed from the running list.

The running list contains a circular list of tasks that have not run-
out their time qugntums, are not waiting for a page, have not been blocked,
and have not reached completion. These tasks are being processed for bursts
of time 8. In this circular list is a resident system task. The system task
manages memory by removing those pages from the working sets that have not
been referenced in T seconds, and placing them on one of the available lists.
It keeps count of those pages that are not currently a part of a working set.
If the ready list contains a task of high enough priority whose working set
would "fit" into main memory, the task is entered onto the running list and
its working set size is deducted from the available page list. The task enters
its pages on demand and a current working set size is computed. If after
the first 1t seconds of processing, the task has not reached its specified

size, the reserved pages are returned to the available list (simply by adjust-

ing the count). If din processing, a task requests a page that, exceeds its
working set size, it is allowed to grow as long as paées are available;
otherwise, it is removed from the running list.

Pages become inactive and available for one of two reasons: (a) they

have not been referenced in 7 seconds (have left the working set) or (b) the

17

task to which they are attached becomes inactive. A task becomes inactive
due to quantum time-out, task blocking, or exceeding the working set size
when no pages are available.

Therefore, the system maintains dynamic working sets for active
tasks. In order to reduce page swapping to a minimum, pages that are to be
swapped out (because they have been altered) are queued together in a special
available list (swappable). Those that do not require swapping are queued
in another list. Each time a page is swapped in on demand, if the swappable
queue is not empty, then a page is swapped out. As these are queues, the last
entries on the queues will be the most recently referenced. Therefore, if a
task references a page that has recently been removed from its working set,
there is a good chance that it will still be in memory. If the available page
count is non-zero, it can be re—attached immediately.

The rest of this paper details the memory management system and the
scheduling algorithm. The remainder of section 2 will discuss the principles
of the paging drum and parallel processing. Section 3 presents the hardware
components of the system. Section 4 presents the overall logical structure

of the system in the form of detailed ALGOL procedures.

2.4 The Paging Drum

Due to the fact that each task is given the impression that it is
the sole user of a computer with an enormous address space and as several tasks
may be competing'for services, the set of pages representing each task's
address space must be stored on some form of mass storage device. In addition,
as the main memory is of a size such that only a relative few of each task's

pages may reside in main memory at a time, this memory must be as efficient as

18

possible.

For this task, a large rotating drum with a fixed head per track is
chosen. The layout of the drum is as shown in Figure 2-5. The drum circum-—
ference is divided into equal parts called sectors, and the drum length is
divided into equal numbers of tracks called channels (or fields). The division
is made such that the area bounded by a sector and a field contains one page
of information. Information is transferred to and from the drum in pages and
therefore it is called a paging drum.

A simple implementation of a paging drum to consider it as an arbi-
trary storage device (i.e., take no advantage of its structure) and queue re-
quests for it first come-first served (FCFS). However, if a queue is established
for each sector (Figure 2-6) then the performance of the system is enhanced
considerably. For the case of N sectors and revolution time T, the expected

access time for the FCFS queue is the expected access time for one request

N-1 T.

Ela]l = =5y

For the multiple-queue, Denning [14] establishes the expected access time as

T
n+l

_1l.n+l

E[a] = 2N)

@ -

where n is the number of requests waiting in the queues {comsidering no penalty
for switching from read to write). It should be noted that this is expected
access time for the next request and not expected service time for each re-
quest. However, as far as drum utilization is concerned, the second result
shows that under a heavier request load (n>>1) the multiple-queue drum per-
forms better, while the single queue drum has a constant utilization. 1In
addition, in a page-on-demand system, the order of request service is unimpor-~

tant. The performance of the paging drum has been given extensive study, and

SECTOR i

DRUM PAGE (i,})

Figure 2-5

al

//ﬁx;/“\ ector
s

v
o
!
/
!
¢

sector O

/

!
|
‘
(
i

page
requests

e e
CHANNEL j

Paging drum diagram

Figure 2-6 Organization of the paging drum

sector queues

19

20

the reader is referred to a paper by Weingarten [32], Denning [14], Coffman
[8], and Abate and Dubner [1].

The result obtained above depends upon the qualification that a
switch from drum read to drum write requires no significant delay. As noted
by Coffman [8], "after reading (writing) a given sector it is not possible to
instantaneously switch the status of the heads so as to commence writing (read-
ing) on the next sector.'" He goes on to suggest several ways of effecting a
"read/write”™ (i.e., no delay) drum, including a gap between sectors, and two
sets of heads (one read, one write). A particularly interesting method is
called the precessing drum. Although there are N sectors on the drum, the
drum reads or writes to every Mth page (where the greatest common divisor for
M and N is 1). Therefore the drum in effect becomes M times slower but con-
tains no wasted space. The point of this method is that the ''gap" of skipped
pages allows the heads time to switch states.

The paging drum defined in section 3.4 is considered to be a "read/
write'" drum. This will be satisfactory for the purposes of this paper, as the

logical description is the same.

2.5 Concurrent Processes

Before continuing on to the implementation, one last topic deserves
mention. The system presented in the next two sections specifies three pro-
cessors which operate asynchronously of one another: the CPU, the paging drum
chammel, and the I/0 channel. However, at specific times in the processing,
each must notify the other of events that require reciprocal action, and, at
other times, they must use facilities (e.g., memory tables) and possibly in-
struction sequences that are accessed by the other processors,

It is imperative in these operations that information not be lost,

21

that deadlocks do not occur, and that all processors are served in a reason-
able time. These problems have been studied by Dijkstra [15,16] and Wirth
[34]. The reader is referred to these papers for further discussion of

this topic.

22

3. HARDWARE DESCRIPTION

This section presents, in detail, the four major system components

which provide the basis for the memory management system:

(a)

(b)

(c)

(d)

main memory. A subsystem that allows three processors to share

the same core memory.

translation memory. The subsystem that performs the address

translation from the logical (virtual) address to the physical
address, resulting in either a fetch/store of main memory, or

a page fault.

page table. The subsystem thet the memory management is based
upon. It consists of a fast memory that contains one entry per
physical page, containing protection information, information
as to the page status, and drum locaticn.

paging drum channel. The subsystem that swaps the pages to and

from memory.

Figure 3-1 shows the overall configuration of the subsystems in re-

lation to the CPU. It includes those registers through which the subsystems

communicate, which are explained further below.

There are three processors in Fig. 3-1: the central processing unit

(CPU), the paging drum channel processor, and the I/0 channel processor. This

paper will confine itself to presenting the addressing and interrupt process-

ing of the CPU and the operation of the paging drum channel. Although the oper-

ation of the I/0 chanmnel is not detailed, its points of contact with the rest

of the system (i.e., main memory access, and CPU interrupts) are included. The

main memory is shared by the three processors; therefore, each has its own

read/write register (RWi), storage buffer (SBRi), and address register (MADRi).

PTSEM
{1]2
. | PTR N Page PTR2
i Table
} :
A
] |
§ — PADR [~ §
| -
¥
PTRAN
PAGINT Faging
CPU Drum
_POST |-~ » Chanmmel
L,_“1 PAGPOST[— >t ¥
V ‘| r'-—"'“ 1
l H 12{3-- - -4
; ti ’ ‘.i [
S | (I
[vap| |{mw1 - Rw2] ;
v {
i p——,] i
_ SBRL™ Main [qSBR2| |
Trans- M §
lation emory ; I/0
M MADR2|—|
emory] - | Channel

INTERRUPT

Figure 3+1 Basic Configuration

S

23

24

In addition, each processor is assigned an access bit (MA(1l)) with which to
signal the main memory of desired access. The main memory uses this register
(MA) to resolve conflicts of access between processors, to assure each pro-
cessor of service within three memory cycles, and to post the completion of the
desired memory operation to the appropriate processor.
The CPU.addresses the main memory through the translation memory in
order to effect virtual addressing: given a virtual address (VAD), either a
physical address (MADRi) or page fault (PFAULT=1) results.
In order that the CPU can keep track of physical page assignments
(e.g., available pages), and in order that the paginé drum channel can keep
a list of pages to be swapped, the special 'page table'" memory is introduced.
Consisting of one memory location for each physical page, it contains the lists
of each active task's working set, the list of available pages, and the list of
pages to be swapped. The ''page table' memory is shared by the CPU and paging
drum channel. Simultaneous access is prevented by supplying an access (sema-
phor) register PTSEM.
The CPU and the paging drum channel communicate to each other through
the page table memory and five registers:
(a) INTERRUPT, one bit of which signals completion of a page trans-
fer to the CPU,
(b) PTRAN, which signals the direction of transfer, or error in trans-
fer,
(¢) PAGINT, which specifies the page transferred,
(d) POST, which signals the paging drum channel that a page is to be
transferred,
(e) PAGPOST, which specifies the page to be transferred.

The paging drum channel is a dedicated processor, linked only to the

25

paging drum, It addresses the drum through the address register CHANNEL and
writes to/reads from the drum word-serial through the buffer register DBR.
The paging drum signals the passing of a page boundary through register PAGEI.
The four subsystems will be presented simply without dwelling on
physical problems. For example, a single-bank shared memory as described in
section 3.1 may be severely handicapped under normal CPU, page chammnel, and
1/0 activity. This problem is easily met through interleaving but the addition-—
al description necessary would merely complicate the overall system description.
The paging drum description presents a similar problem. The drum has a capacity
of 4096 pages of 1024 words each (at 48 bits per word). Although the drum cir-
cumference (16 K bits) is reaéonable, its apparent length (256 x 48 bits) may
be excessive. However, although the drum is logically described as a unit it
could physically be several drums (with the additional complications of syn-
chronization). Therefore, the reader is cautioned to recognize that implemen-
tation of such a system requires much attention to the timing and physical limi-
tations of each component.
Complete description of the system will be deferrgd to section 4.
In that section a task scheduling system will be presented in order to more
completely describe the addressing and memory management algorithms. For clar—
ity, the task scheduling system is presented as a series of ALGOL procedures
which operate on the subsystems presented in this section througﬁ a series of
primitive procedures. For this reason, with each subsystem, procedure calls
and the corresponding CDL'description will be presented. In the same vein,
subregisters will be accessed through function procedures of the same name as

the subregister, with the register name as argument. -~

3.1 Main Memory Subsystem

The main memory subsystem consists of a core memory, address registers,

26

storage buffer registers, read/write control registers, and a control section
that performs timing functions and handles conflicts between competing requesters.
A requester may be any of the system processors (e.g., the CPU or an I/0
channel). For simplicity, only three processors will be defined in this imple~-
mentation as competing for main memory: (a) the CPU, (b) the paging drum channel,
and (c) a general.I/O channel. 1In addition, the memory will consists of one
bank {i.e., no interleaving).

Each competing processor i will have a memory register MADRi, storage
buffer register SBRi, and read/write register RWi and will be unaware that it
is competing for the main memory. To access main mehory, the processor loads
the address register and, if writing, the storage buffer register, sets RWi
to 1 for a read or to 0 for a write, and sets a bit of the memory access regis-
ter, MA(i), to 1 to indicate a memory access. The memory subsystem consists of
the memory access register MA, the memory address register MAR, the memory buffer
register MBR, a memory read terminal READ, a memory write terminal WRITE, and
65K of 48-bit core memory, MEM(MAR). The CDL description of the memory appears
below.

Comment, méin memory subsystem

Memory, MEM(MAR)=MEM(0-65535,1-48) Smain memory

Register, MAR(1-16), Smain memory address register
MBR(1-48), $main memory buffer register
MA(1-3), Smemory access register

MADR1(1-16), S$CPU address register

MADR2 (1-16), Spaging drum channel address register
MADR3(1~16), $1/0 channel address register
SBR1(1-48), SCPU storage register

SBR2(1-48), Spaging channel storage register

SBR3(1-48), $1/0 channel storage register

27

RW1, $CPU read/write register

RW2, $paging channel read/write register

RW3, $I/0 channel read/write register
Terminal, READ, Sread terminal

WRITE, Swrite terminal

The sequence chart for the main memory subsystem is shown in Figure
3-2. The actual read or write is performed by loading MAR from and loading/
storing MBR from/to the appropriate processor's registers depending upon the
value of RWi and MA(i), and setting either the READ or WRITE terminal. If
READ is set to 1, then the transfer
MBR<MEM (MAR)
occurs. Lf WRITE is set to 1, then the transfer
MEM(MAR)~<MBR
occurs. Lt should be noted that the logic in the sequence chart resolves all
conflicts and that any one processor must be serviced within three main memory
cycles of the request.
Table 3-1 presents the two procedures for accessing main memory:
(a) loadmm, read from main memory, and (b) storemm, write to main memory. Both
of these procedures use the storage buffer register SBR as the source or des-
tination of the information transferred. The actual memory access is accom-
plished by setting bit MA(1l) to 1, and then waiting for completion (MA(1)=0)

before returning control.

3.2 Translation Memory Subsystem

Virtual memory, in this implementation, consists of up to 1024 pages’/

of 1024 48-bit words each. Each address field consists of 24 bits as shown in
Figure 3-3. The D field indicates that this is either a virtual (D=0) or

physical (D=1) address. The I field indicates whether this is an indirect

28

we3sAsqns Alowsw UTBW I0J 3aeyo aousanbag Z-€ @2an81g

|

- 0> (E)VK
| SO
N .
[a M
EYAVI VI 70 (DR &w
£YES >9aH R S
,
EIAVH ’ A ‘

Loy i - R -7ds | © 0 ~DVK

\ N CIAVH ~AVH b

R o {
- 9IS >¥AH e M
T S T >ELTHM ~
W w
H WIHTEAS O 19 |
o TYES ¥R
. ./,)
—5- © Wiy | [Taavm »avm T oaLTam
g © T> avay
. &
™ T e
| o ™y
| B 3 (2)VR I -~ J0
| DE— i T
S -~ e o O - A.—”vg)

¥ - >] - =

procedure call CDL description

explanation

loadmm (i,j,SBR) MADR1(1-6)<1i
. MADR1(7-16)+15
RW1<1:,
MA(1)<1;

IF(MA(1)=0) THEN(return)

storemm (i,j,SBR) ! MADR1(1-6)<1i;

MADRL (7-16)<j3

RW1<0,

MA(1)+1,

IF(MA(1)=0) THEN(return) ;

load SBR from
main memory location

page i, word j

store SBR to
main memory
location page i,

word jJ

TABLE 3-1 Main memory procedures.

29

address (I=1) or not (I=0). The X field indicates whether indexing is to be
applied to this address (1<4X<3) or not indexing (X=0), and which of 3 index
registers to use. The 20-bit ADR field either contains a 20-bit virtual address
(D=0) or a 16-bit physical address (D=1).

The correspondence between the virtual name space and physical name

space is achieved through a 1024 word translation memory. As the virtual

memory is split between the user task (pages 0 through 511) and the system

(pages 512 throdgh 1023), each task has its own copy of the portion of trans-
lation memory it is using (between 1 and 512 pages). When a task gains control
of the CPU, its copy of translation memory is loaded. When the task relinquishes
control of the CPU, those locations in the translation memory that were altered
are copied.

When addressing the virtual name space, the high-order 10 bits are
used to address the translation memory. Each word in the translation memory,
as shown in Figure 3-3, consists of 16 bits. The ACT field indicates whether
or not the page is currently active (i.e., a member of the task's working set);
the REFD field indicates whether or not the page has been referenced; the CHGD
field indicates whether or not the page has been written into; the WP field
indicates whether or not the page is write protected; the WKEY field is the pro-
tection key for the page; and the BLK field contains the 6-bit physical page
address for the virtual page if it is in main memory.

The CDL description of the translation memory configuration appears
below. In addition to those registers mentioned above, the configuration con-
sists of the translation memory address register TADR, the read error register
RFLAG, the write error register WFLAG, the page fault register PFAULT, and the
main memory register MADR1, SBR1, RW1l, and MA. The main memory registers were
explained previously. The register RFLAG is set to 1 if an attempt is made to

read from a page whose key does not match the task's key. The register WFLAG

Virtual memory address format

DI X PAGE

i

P Py e y bits
11 2 10 10
Translation memory address format
Sa g WP WKEY 8§ BLK
S8 d :
; H
i’_
-~ vaw — ———
11 1 1 4 2 ¢ bits

Figure 3-3

31

32

is set to 1 if an attempt is made to write to a page that is either write pro-
tected (TMR(WP)=1) or whose key does not match the key of the current task. The
register PFAULT is sét to 1 if a virtual page is addressed whose physical page
is not currently a part of the task's working set (TMR(ACT)=1).

Comment, translation memory subsystem

Memory, TMEM(TADR)=TMEM(O—1023,l~l6) Stranslation memory

Register, TADR(1-10), Stranslation memory address register
TMR(1-16), Stranslation memory buffer register
VAD(1-24), Svirtual address register

MADR1(1-16), $main memory address register (for CPU)

RW1, Sread/write register (for CPU)
RFLAG, $read error flag

WFLAG, S8read error flag

PFAULT, Spage fault register

MA(1-3), $main memory access register
SBR1(1-48), $storage buffer register (for CPU)

Subregister ,TMR(ACT ,REFD,CHGD ,WP ,WKEY ,NOTUSED ,BLK)=TMR(1,2,3,4,5-8,9-10,11~-16)
VAD(D,I,X,PAGE ,WORD)=VAD(1,2,3-4,5-14,15-24),

MADR1(BLOCK,WRD)=MADRI1 (1-6,7-16)

Table 3-2(a) presents the two primitive procedures for accessing
translation memory: (a) loadtmr, reading from the translation memory, and (b)
storetmr, writing to the translation memory. Table 3-2(b) lists thirteen

function procedures that are used to reference subregisters.

3.3 Page Table Subsystem

Memory management is enhanced by the addition of a special fast memory
called the page table. The page table has one entry for each physical page in

memory and is not to be confused with the translation memory, which has one

procedure call

CDL description i

explanation !
|

p—
i

loadtmr(i,TMR) TADR<i , i load the buffer register TMR !
TMR~TMEM(TADR) i from translation memory addr. iZ
storetmr(i,TMR) TADR« , g store the buffer register TMR
TMEM (TADR)<TMR E into translation memory add. i
f
(a) translation memory procedure calls

function CDL description explanation

act (TMR) TMR(ACT) active page indicator

refd (TMR) TMR(REFD) page reference indicator
;chgd(TMR) TMR (CHGD) page change indicator
;wp(TMR) TMR (WP) write protect indicator
éwkey(TMR) TMR(WKEY) page key
t
éblk(TMR) TMR (BLK) memory address of page
gd(VAD) VAD(D) physical/virtual address indicator
[i(VAD) VAD(I) ‘indirect addressing indicator

% (VAD) VAD(X) indexing indicator
‘page(VAD) VAD(PAGE) virtual page address part of VAD
lword(VAD) VAD(WORD) word address part of VAD
‘block(MADR1) MADR1 (BLOCK) physical page addr. part of MADRL
;wrd(MADRl) MADR1(WRD) word address part of MADR1

i
|

translation memory field functions

Table 3-2

33

34

entry for every page in virtual memory. The page table consists of 64 66-bit

words, called page descriptors, that represent the current status of the page,

the task it is or was attached to, its protection bits, utilization information,
the corresponding virtual address, the drum address, and list linkage information.
The CDL description for the page table appears below. The page
table consists of- the fast memory PAGETABLE, its address register PADR, its
buffer register PTR, counters CAVPA, CAVPV, and AVPC, and list registers PTLIST,
LSP, LAVP.
Comment, page table configuration
Memory, PAGETABLE (PADR)=PAGETABLE(0-63,1-66)
Registers, PADR(1-6), Spage table address register
PTR(1-66), $page table buffer register
CAVPA(1-6) , Scount of immediately available pages
CAVPV(1-6), Scount of total available pages
AVPC(1-7), Sreserved page count (for working sets)
PTLIST(1-12), S$general page table list register
LSP(1-12), $list of swappable pages (pointer register)
LAVP(1-12), $1list of available pages (pointer register)
GPTL(1-12), $general page table list register
PTSEM(1-2), $page table semaphore
Subregisters, PTR(USE,LB,LF,WKEY,WP,CHGE,RES,UTIL,TID,VP,DP,ROW)=
PTR(1-2,3-8,9-14,15-18,19,20,21,22-27,28-43,44-53,54-65,66) ,
AVPC(SIGN ,MAGNITUDE)=AVPC(1,2-7),
PTLIST(FP,LP)=PTLIST(1-6,7-12),
LSP(FP,LP)=PTLIST(1-6,7-12),
LAVP (FP ,LP)=LAVP (1-%,7-12),

GPTL(FP,LP)=LAVP(1-6,7-12),

35

Table 3-3 presents the format of the page table buffer register, PTR.

Field PUSE defines the current usage:

(a)

()

(c)

(d)

active (PUSE=0). The ﬁaée is attached to a task's (TID) work-
ing set and linked to it's list of active pages through LB

and LF. The page's key WKEY, write protect bit WP, virtual
address VP, and drum address DP are loaded with the corres-
ponding values. Field CHGE reflects whether the page has been
altered; field RES indicates whether it is resident; and field
UTIL is a counter reflecting the time since the page was last
referenced (every time the entry for a referenced page is re-
moved from translation memory its UTIL field is loaded with zero).

queued for swap-out (PUSE=l). The page is attached to the list 4

of swappable pages (pointed to by the LB and LF fields of re~-
gister LSP). Field ROW is set to 1. All other fields remain

as they were just before being placed on this list.

unagvailable (PUSE=2). The page is undergoing swapping (either

in or out) and may not be accessed by the CPU (except by procedure

queue request, to be described in section 4).

available (PUSE=3). The page is attached to the list of avail-
able pages (pointed to by the LB and LF fields of register
LAVP). Field ROW is set to zero; field CHGE is set to zero.

All other fields remain as they were before being pléced in this

list.

The four list registers LSP, LAVP, GPTL, and PTLIST point to the

first and last entries in a list through the FP and LP subregisters. LSP '\

always points to the list of swappable pages; LAVP always points to the list

of available pages; register GPTL and PTLIST are used as general pointer registers

to point to any of the other several lists that may come into question (e.g.,

36

7 g:n =
& LB LF WKEYRBE UTIL TID VP DP 2
ST T e e D T e
2 6 6 4 111 b6 16 10 12 1
PUSE=0 , page is active (attached to an active task)
=] , page queued for swap-out
=2 , page is unavailable (I/0 in process)
=3 , page is available
LB and LF, forward and backward links for a chain of pages
WKEY , read/write protection key
WP , write protect (FP=1)
CHGE , bit indicating page has been altered (CHGE=1)
RES , bit indicating the page is resident (RES=1)
UTIL , utilization counter. UTIL<t if it belongs in a working set
TID , pointer to the task identifier for the task: (a) the page is attached to(PUSE=0)
(b) the page was attached to(PUSE=1,3)
{c) the page will be attached to
(PUSE=2)
VP , Vvirtual page address for this page in task TID
DP ; drum address of this page
ROW, , read/write indicator
AN

Table 3-3 Page table buffer register

37

there is one list for each active task). Three counters monitor the available
pages:

(a) CAVPA is a count of the numbers of pages contains on the list of
available pages;

(b) CAVPV is a count of the number of pages available to the active
tasks, either on the list of available pages, the list of swapp-
able pages, or being swapped out;

(c) AVPC is a count of the number of pages available that are not
already assigned to some active task's wq;king set.

Three counts are necessary in order to quickly determine at any one time how
many pages are available and how many are available immediately.

The page table is shared by the CPU and the paging drum channel.

As these are asynchronous processors8, some method of control must be included

in all procedures that access the page table to insure that the two processors
do not access the page table simultaneously. In addition, as both processors
may alter the list structures contained within the page table any list operation
initiated by one processor must be completed befere control can be given to the
other processor. To accomplish this, the page table access register, PTSEM

is defined, which allows the two processors mutually exclusive access to the
procedures (see Figure 3-4, 3-5, and 3-6).

Table 3-4 lists the procedures for accessing the pagetable which load
and store page descriptors, and queue (putpt), dequeue (getpt), and detach
(detachpt) page descriptors from specified lists. These are complex enough to
warrant separate descriptions by sequence ghart in Figure 3-4, 3-5, 3-6.

Table 3-5 lists the functions that access the page descriptor fieiﬁs

in the PTR register and the list register fields.

38

Procedure call

CDL description
(micro-operations are
sequential)

Explanation

loadpagedescriptor (j,PTR)

storepagedescriptor(j,PTR)

putpt(page,ptl,PTR)

getpt(page,pt1l,PTR)

detachpt(page,ptl,PTR)

see Figure 3-4(a)

see Figure 3-4(b)

see Figure 3-5(a)

see Figure 3-5(b)

see Figure 3-6

load PTR from the jth loca-

tion of PAGETABLE

store PTIR into the jth loca~ !

tion of PAGETABLE

add page descriptor pointed
to by page to page list ptl

detach the first pagedescrip%
tor from list ptl; place ad-
dress in page; leave a copy

in the PTR

detach the page descriptor
pointed to by page from list

ptl; leave a copy in the PTR

Table 3-4

Page Table Procedures

(a) loadpagedescriptor (j,ptr)

PTSEM(1)«1
PADR«j

:

PTR<PAGETABLE (PADR)

PTSEM(1)<0

(b) storepagedescriptor(j,ptr) start

A7
PTR<ptr

%

PTSE@;m

0

PTSEM(1)<«1
PADR<j

b

PAGETABLE (PADR)<PTR

b

PTSEM(1)«0

!

Figure 3-4

39

(a) putpt(page,ptl,ptr)

T

(PTSEM(2)

0

PTSEM(1)<«1
GPTLeptl

GPTL(FP)<«page

{ =0
{ GPTL(%:) 0

b

PADR«GPTL(LP)

PTR«PAGETABLE (PADR)

K

PTR(LF)<page

}

PAGETABLE (PADR)«PTR

20l

A

PADR+page

K

PTR<PAGETABLE (PADR)

:

PTR (LB)<«GPTL (LP)
PTR(LF)<0

PAGETABLE (PADR)<PTR
GPTL(LP)<PADR

pt1«GPTL
PTSEM(L)<0
L ptr<PIR

!

Figure 3-5

(b)

getpt (page,ptl,ptr)

B3

\ 1

0

PTSEM(1)+1
GPTL<ptl

PADR<GPTL (FP)
page<«GPTL(FP)

h:

PTR<PAGETABLE (PADR)

GPTL (FP)«PTR(LF)

pt1«GPTL
PTSEM(1)<0
ptr<PTR

s

40

PTSEM(2)

foresesencoms et

0

PTSEM(1)<«1
PADR«+page

GPTL¢ptl
)

PTR«<PAGETABLE (PADR)

(GPTL(FP)=PAD5}=

L

GPTL (LP)<PTR(LB)
PADR«PTR(LB)

M

PTR&PAGETABLE(PADRﬂ

PTR(LF)<0

y

)=PADR

N
A

GPTL (FP)<«PTR(LF)
GPTL (LP)«PTR(LB)

PADR<PTR(LB)
¢
PTR+PAGETABLE (PADR)

PAGETABLE (PADR)+PTR

4

pt1+GPTL

!
PTR(LF)<GPTL (FP)
!

k4
PAGETABLE (PADR)+PTR
|

&
PADR«GPTL (LP)

¥
PTR«PAGETABLE (PADR) |
1)
PTR(LB)~GPTL(LP)
)

PAGETABLE (PADR)<PTR

l

Figure 3-6

i
PADR«page

+

PTR#PAGETABLE(PADRj?

GPTL (FP)<PTR(LF)

pt1<GPTL

PTSEM(1)<0 i

pPtr«PTR |

detachpt(page,ptl,ptr)

1
S amenod

function CDL description explanation
‘h\u
puse (PTR) PTR(PUSE) usage field
1b(PTR) PTR(LB) link back field
1f(PTR) PTR(LF) link forward field
wkey(PTIR) PTR(WKEY) page key
wp (PTR) PTR(WP) page write protect bit |
chge (PTR) PTR(CHGE) page altered bit !
res (PTR) PTR(RES) page reserved bit
util(PTR) PTR(UTIL) utilization field of PTR
tid(PTR) PTR(TID) task identifier
vp(PTR) PTR(VP) virtual page
dp (PTR) PTR(DP) drum address
% row(PTR) PTR(ROW) read/write indicator
-
fp{ptl) ptl(¥P) first page de8criptori
~of list ptl*

1p(ptl) ptl1(LP) last page descriptor
*ptl must be (a) PTLIST

(b) LAVP

(c) LSP

(d) GPTL

(e) PTL

Table 3~5 Page Table Functions

42

43

3.4 Paging Drum Channel Subsystem

The paging drum channel subsystem consists of a large drum memory and
a dedicated channel processor. The two combine to provide the backing store
for the virtual memory system. The drum provides storage for 4096 pages,
arranged 16 pages to a drum circumference and 256 pages to the drum width with
fixed heads for each track. The drum channel queues requests in 16 separate
queues, one queue for each set of 256 pages that come under the read/write
heads at once. This allows for optimum average page access times under heavy
page traffic conditions.

PAGING DRUM

The paging drum PDRUM is a paging drum containing 4096 pages stored
word—-parallel in 256 bands, called channels, around the circumference of the
drum, 16 pages to a band. Each page occupies one-sixteenth of the drum cir-
cumference, call;d a sector. As the pages are stored word parallel, there are
16K bits per track, and 48 read/write heads per channel. At any one time; the
drum address can select one of the 256 channels but must wait for the appropriate
sector to come under the heads in order to read the desired page.

The paging drum is described below as a two dimensional memory PDRUM
addressed by registers CHANNEL and CWORD and returning a 48-bit word in drum
buffer register DBR. Each time DBR is available for reading or writing the
buffer status register BS is set to 1, every time a page has been transferred,
the register PAGEI is set to 1. Read/write register RW indicates a drum read
if RW is set to 0, a drum write if RW is set to 1. If no page is to be trans-
ferred, DACTV is set to 0, else it is set to 1. AN

Comment, paging drum configuration
Memoty, PDRUM(CHANNEL ; CWORD)=PDRUM(0-255 ,0~-16383,1-48)

Register, CHANNEL(1-8) , Schannel address

44

CWORD(1-14), S8drum channel address

DBR(1-48), $drum buffer register
DACTV, 8drum active register
RW, $drum read/write register
BS, Sbuffer status indicator
fAGEI $page complete indicator

Subregister, CWORD(SECT)=CWORD(1-4),

CWORD (PCOUNT) =CWORD(5-14)

Figure 3~7 shows the sequence chart for the paging drum. As the drum
operation is circular, so the sequence of operations in the chart is circular.
Although no transfers are made if DACIV is 0, the drum keeps rotating, represented
by the counting operation on CWORD. When reading from drum, BS set to 1 in-
dicates DBR is full, while when writing to drum, BS set to 1 indicates DBR
is empty. When CWORD(PCOUNT) becomes zero, a page has been swapped in or out,
and the register PAGEI is turned on to indicate this. At this time DACTV is
set to zero; therefore, in the time it takes the drum to rotate between words,
the paging drum channel must reset CHANNEL, RW, and DACTV and possibly load
DBR.

PAGING DRUM CHANNEL

The paging drum channel is defined here as a dedicated processor that,
in addition to swapping pages to and from memory, maintains queues of requests
in the page table memory -- one for each drum sector, and, as a drum sector
comes ﬁﬁder the read/write heads, it initiates the read/write indicated by the
first request in that sector queue. Upon completion of a page transfer, an N
interrupt is issued to the CPU in order to release the task and/or page await-
ing the request.

The channel configuration, described below in CDL, is centered around

two small fast, l6-word memories: the command buffer COM, addressed by address

9 pactv)
1
!
)

start

RW 1

DBR<PDRUM (CHANNEL , CWORD)
BS«1

PDRUM (CHANNEL , CWORD) <DBR
BS «1

CWERD<countup CWORD

(\ #0
CWORD (PCOUNT) }

=()

Y

PAGEI<1
DACTV+0

Figure 3-7

45

Sequence chart for paging drum

46

register SEC, and the listhead buffer LISTS, addressed by register SECIORS.

Comment , paging drum channnel configuration

Memory,

Register,

COM(SEC)=COM(0~15,1-64), Scommand memory

LISTS(SECTORS)=LISTS (0-15,1-12) S$pointers to queued requests

SEC(1-4),
SECTORS (1-4) ,
COMMAND(1-64) ,
PTR2 (1-66) ,
PTL(1-12),
PTSEM(1-2),
POST,
PAGPOST(1-6) ,
CHANNEL (1-8) ,
CWORD(1-14),
COUNT(1-10),
MADR2 (1-16),
SBR2(1~48),
DBR(1~48),
RW2 ,

RW,

DACTV,

BS,

PAGEL,
PTRAN(1-2),
PAGINT,
MA(1-3),

INTERRUPT (1-10)

Saddress register for command memory

Saddress register for list-head memory

Sbuffer register for command memory

Spage table buffer register (for paging chamnel)
Spage table 1list register -

$page table semaphor

$page posting indicator

$page posted

$channel address register

Schannel word address register

Sword counter

$main memory address register (for paging channel)
$main memory buffer register (for paging channel)
S8drum buffer register

$main memory read/write register (for paging channel)
$drum read/write register

Sdrum active register

Sbuffer status register

S$page complete register

$page transfer direction

$page for which interrupt occurred

$main memory access register

$CPU interrupt register

47

Subregister, COMMAND(C,RWC,CHAN,PGE ,FIRSTWORD)=COMMAND(1,2,3-10,11-16,17-64),

PTL(FP,LP)=PTL(1-6,7~12),

MADR2 (BLOCK ,WRD)=MADR2 (16 ,7-16) ,

INTERRUPT (PAGE)=INTERRUPT(4) ,

CWORD(SECT , COUNT) =CWORD(1-4 ,5-14) ,

INTERRUPT(DRUMTAGE)=INTERRUPT(10),

PTR2 (CH, SEC,ROW)=PTR2 (54~61,62-65,66) ,
Each drum sector has an associated queue of page requests. The first request
on the queue (the next to be serviced) is maintained in a command buffer lo-
cation. The rest of the requests are linked in a doubly-linked list in the page-
table memory PAGETABLE, and this list is identified by a 12-bit list head which
points to the first and last entries on the list and is stored in the listhead
memory LISTS. Buffer register COMMAND and address register SE(are used to
access the command memory. Address register SECTORS, listhead buffer register
PTL, page table access register PTISEM and pagetable buffer register PTR2 are
used to access the pagetable and listhead memories. Address registers CHANNEL
and CWORD, buffer register DBR, and status registers PAGEI, RW, DACTV, and BS
are used to access drum memory. Address register MADR2, buffer register SBRZ,
read/write register RW2, and access register MA are used to access main memory.
Registers INTERRUPT, PAGINT, and PTRAN are used to notify the CPU of a com-
pleted page transfer and/or error. Registers POST and PAGPOST are used by the
CPU to post a page request with the drum channel. Counter COUNT is used to
compute the memory pagéword address and to check for complete page transfers.

Figure 3-8 displays the format of the COMMAND and PTL buffer
registers. If the command word contains in COMMAND is useful (i.e., has not>
been used), then C is set to 1, RWC indicates the read/write, CHAN contains the
drum channel (the command word address is the sector number), PGE contains the

main memory page address, and in the case of a drum wyrite FIRSTWORD contains the

PTL

C RWC CHAN PGE FIRST WORD

1 48

48 bits

C=0 if page has been swapped
=1 if page has not been swapped
RWC=0, if page is to be swapped in (read)

=1, if page is to be swapped out (written)

CHAN= drum channel address of page

PGE= memory page address to be swapped

FIRSTWORD= first word of page to be swapped (if RWC=1)
FP LP

]

Fp= first page of queue of this sector

LP= last page of queue for this sector

Fig. 3-8 Format of COMMAND and PTIL registers

49

first word of the page to be swapped. Register PTL has the standard page list-
head format.
Table 3-6 presents the procedure calls associated with the paging drum

channel. The first three (putpt, getpt, loadpagedescriptor), are used as

shorthand for the sequence chart in Figure 3-11. They represent slightly altered
forms of sequence charts already presented, in Figure 3-5a, 3-5b, and 3-4a,

respectively. The queuerequest procedure will be used in section 4.3, but is

useful here in indicating how the CPU posts a page request with the drum channel.
The sequence chart appears in Fig. 3-9. It should be noted that the logic

does not allow a page request to be lost if the channel cannot handle a previous
request before the next request is made. In this case, the CPU "hangs up"

(i.e., loops until the previous request is handled).

Figure 3-~10 presents a descriptive flow chart of the sequence chart
presented in Fig. 3+~11. The reader is urged to study the details of 3-11
carefully. 1In particular, it should be noted that once a new channel command
is initiated, two processes occur in parallel: the left-hand subsequence (be-
ginning with the DACTV branch) handles the page swapping, and the right-hand
subsequence (beginning with SECIORS<SEC) loads the command buffer with the next
command for the current sector, if there is one, and then cycles and waits for
page requests to be posted by the CPU.

In the right-hand subsequence, the first step is to check the list-
head of the current sector to see if the list is empty (PIL(FP)=0). 1If it is,
then the completion bit (COMMAND(C)) is set to zero, indicating that there is
no command for this sector. However, if the list is not empty, then the first
entry on the list pointed to by PTL is removed (getpt(PG,PTL,PTR2)), and the
command buffer is loaded with the memory page address (PG), channel address
(PTR2(CH)), and read/write indicator (PTR2(ROW)). If this is a write to drum

(PTR2(ROW)=1) then in addition the first word of the page is loaded to the

50

i procedure call CDL description explanation
|
putpt (page ,PTL,PTR2) ~ Figure 3—5(;)* place page page on the queue PTL §

using PTR2 as a buffer register

getpt(page ,PTL ,PTR2) Figure 3-5(b)* get the first page page on queueé

PTL and leave a copy in PTR2

loadpagedescriptor(page ,PTR2) Figure 3-4(a)* load PTR2 with a copy of page

descriptor page

queue request(page) Figure 3-9 queue page page for swapping

* except substitute PTR2 for PTR; switch PTSEM(1l) and PTSEM(2)

Table 3-6 Procedure Call for Paging Drum Channel

PAGINT<page

POST«1

J,

Figure 3-9 queue request(page)

51

'

!{/ Drum page ™

. I3 l‘
no - interrupt?’

yes

no

Drum page
interrupt?

52

no ranster
indicated?

yes

£

yes
Post page B
transfer
Initialize next
drum transfer
i

yes/ Current sector
\..__queue empty?

no

Transfer a word

Lfrom/to memory, |

| yes

{

Mark
sector

command

empty

“Drim PAEE
(interrupt?/

Increment

memory address

Detach next

page request

Update secto

command

pa

Was a complete no
d2 [

.. page transferre

yes

4

Post

error interrup

t

rum page

interrupt?
ino

¥
(Z’Sector queue \ pno
T

equest posted?/

ector

em

{:%ector command
empty? .

no

sector

queue

yes

Figure 3-10 Descriptive flow chart of paging drum channel

atart

PAGINT= MADIC (BLOCK) | N
. INTERRUPT(PACE}*l
— FAGEL+0
SEC+CHURD{SECT)
COMMANDCOM(SEC)
COUNT0
" [DBR-COMMAND (FIRSTWORD)
DACTV+COMMAND(C)
MADRZ (BLOCK)+COMMAND(PGE)
CHANNEL+COMMAND(CHAN)
5+-COMMAND (RWC)
(e
!
1
PTLrLISTS (SECTORS)
i
-
—n (raem=)
wmey)
- i" gotpt(PG,PTL, PTR2)
MA(2) W2+RA e .
) MADR2 (WRD)+-couatup COUNT : LISTS(SECTORS}-FTL i
MA@R)yL COMMAND (C)+0 COMMAND(C)+1
Bs \ COMMAND(PGE}*PG
1 COMMAND (CHAN)+PTR2 (CH)
COMMAND(R4C)+PTR2 (ROW :
MADR2 (WRD)+COUNT : (RAC)+PIRZ (ROW)
SBR2+DBR
B R
MA(2)«1
{ DBR-SBR2 i
8 racar
1
MADRZ+PC-0
l MA(2)*1
© INTERRUPT (DRUMPAGE)+1 " i
! L P MA(2) ;
| PTRANO | l?’rmt-comcw R | PTRAN3 l - i
5 i [comusn(rirsTworD)-s8R2 | -
g
t |‘cou(sat:)+comn'
L PAGEL :
[
(Cros (
1 !
|
[10adpagedescriptor(PAGPOST, PTR2)|]
M
SECTORS*PTR2 (SEC LISTS(SECTORS)+PTL
i POSTeD

Flgure 3~11 Sequence chart for thae paging drum channe)l

l PTL-LISTS (SECTORS)

PTL(FP)=D

o, Ept (PACPUST FTL,ITRE, ¢ |

I SEC*SESI‘ORS
b

{ COMMANT-COM(SEC) |
plalubiiiintottutuint SV

—t
AND

G&c «© -
- -

Mt ot e

Ty POARPALPOST
P ey

|

54

command buffer. This reduces the amount of time required to initiate the page
swap on the next drum revolution. Once the command word has been reloaded to
the command buffer memory, the subsequence monitors the POST register. If
the CPU posts a page request, the subsequence checks to see if the command
buffer entry for that sector has its C subregister set to zero. If so, then
this new page.request is loaded directly to the command buffer, else it is
added to the list of page requests for this sector.

The left-hand subsequence interfaces with the sequence chart in
Figure 3-7 (the drum sequence). If a page is to be transferred (DACTV#0),
then if RW=0 the transfer is from drum to memory, else (RW=1) the transfer is
from memory to drum. In the former case (drum to memory), when the drum sig-
nals the buffer (DBR) has been loaded (BS=1l), then the word is written to the
main memory. The earlier test on MA(2) assures us that the previous memory
write was compiled, In the case of a transfer from memory to drum, the first
word is already in DBR and the sequence signals the memory to load SBR2Z with
the next word, waits for the drum to signal the completion of the transfer (BS=1)
and then reloads DBR. At the completion of each one-word transfer, the PAGEL
fégister is checked to see if the drum has reached a page boundary. If not,
the COUNT register is incremented and another word is transferred. If so, then
the subsequence tests to see if a complete page was transferred (COUNT add
RW = 1023). This curious equation is a result of the fact that on a transfer
from memory to drum (RW=1), the subsequence passes through the loop one time
la#ss (as DBR is loaded before the loop is entered).

Upon completion of a page swap, register PTRAN is set to indicate ﬂ%i
status: (a) no swap (PTRAN=0), (b) page read to main memory (PTRAN=1), (c)
page written to drum (PTRAN=2), or (d) incomplete swap (PTRAN=3):; register

PAGINT is loaded with the page address of the page swapped, and interrupt sub-

55

register INTERRUPT(PAGE) is set to one.

3.5 Interrupt and the CPU

The physical configuration of the central processing unit (CPU) is
purposefully left undefined, except for the addressing and interrupt handling
connected with -task scheduling. In defining the CPU further, the topic would
be broadened and, at the same time, restricted unnecessarily. Indeed, the
address format described in section 3.2 makes assumptions about indirect address-
ing and indexing, although merely intended to be exemplary!

Table 3-7 lists the INTERRUPT single-bit subregisters and their in-
terpretation. These include an interval timer interrupt bit, blocking and un-
blocking interrupt bits, a page interrupt bit, a task completion bit, task sus-
pension bits and wvarious error interrupt bits.

At this point it is instructive to regard Figure 3~1 once again, which

"displays the registers with which the subsystems inter-communicate. The rela-
tionship of the pagetable, main memory and paging drum with the paging drum
channel has now been defined. In addition, the processors' mutually exclusive
sharing of the pagetable and. . main memories via the MA and PTSEM access registers
has been outlined.

The primitive procedure calls defined in this section will be used in
the next section, inuwhich the logical structure of the memory addressing,
memory management, and task scheduling will be presented as a series of ALGOL

procedures.

56

name CDL description explanation
timer (INTERRUPT) INTERRUPT (TIMER)=INTERRUPT(1) indicates interval timer
has gone to zero
blocked (INTERRUPT) INTERRUPT (BLOCKED)=INTERRUPT (2) indicates the current task
! has been blocked
unb locked (INTERRUPT) INTERRUPT (UNBLOCKED)=INTERRUPT(3) : indicates a task may be un-
blocked
page (INTERRUPT) INTERRUPT (PAGE)=INTERRUPT (4) indicates a page has been
swapped (in or out)
complete (INTERRUPT) INTERRUPT (COMPLETE)=INTERRUPT (5) indicates the current task
% has completed
deactpw (INTERRUPT) INTERRUPT (DEACTPW)=INTERRUPT(6) ? indicates current task
should be deactivated to
§ the page wait list
deactr1(INTERRUPT) INTERRUPT (DEACTRL)=INTERRUPT (7) indicates current task shouldz
b2 deactivated to ready list
susp (INTERRUPT) INTERRUPT (SUSP)=INTERRUPT(8) indicates current task should

addressfault (INTERRUPT)

drumpage (INTERRUPT)

INTERRUPT (ADDRESSFAULT)=
INTERRUPT(9)
INTERRUPT (DRUMPAGE)=

INTERRUPT (10)

be suspended but not deac-
tivated

indicates an address fault
(error condition)

indicates an incomplete page !

transfer (error condition)
AN

Table 3-7 Interrupt subregisters

57

4. SYSTEM DESCRIPTION

This section presents the detailed description of the virtual memory
addressing, task scheduling, and memory management. The description is pre-
sented in ALGOL. Except for the description of the system task (Procedure
4-27), the ALGOL descriptions represent microprograms and/or hardwired sequences
that control the fetch-execute cycle, address translation, memory access,
and interrupt processing. Specifically, the hardware sequences described
in section 3 are considered to be procedures and are referred to in standard
ALGOL fashion. Fields of registers are referenced as function procedures
with the register appearing as an argument of the procedure statement. No-
tationally, three conventions are adopted:

(1) ALGOL delimiters are represented lower—case and underlined

(e.g., procedure, begin, end, if, then, else, etc.),

(2) procedure names (in both declarations and statements) are in
lower—case,
(3) variables are in upper-case.
‘The data structures for the task lists and procedures that manipu-
late the data structures are presented first, followed by descriptions of

miscellaneous procedures, and finally the system algorithm.

4.1 Data Structures

The data structures used in the virtual memory subsystem consists of
two types: lists of task deécriptors and lists of page descriptors. The
lists of page descriptors have been described previously in the memory manage-
ment description (section 3.3). Task descriptors reside in main memory, and

consist of a block of words containing pointers to the previous and following

57

4. SYSTEM DESCRIPTION

This section presents the‘detailed descrigtion of the virtual memory
addressing, task scheduling, and memory management. The description is pre-
sented in ALGOL. Except for the description of the system task (Procedure
4-27), the ALGOL descriptions represent microprograms and/or hardwired sequences
that control the fetch-execute cycle, address translation, memory access,
and interrupt processing. Specifically, the hardware sequences described
in section 3 are considered to be procedures and are referred to in standard
ALGOL fashion. Fields of registers are referenced as function procedures
with the register appearing as an argument of the procedure statement. No-
tationally, three conventions are adopted:

(1) ALGOL delimiters are represented lower—case and underlined

(e.g., procedure, begin, end, if, then, else, etc.),
(2) procedure names (in both declarations and statements) are in
lower—-case,
(3) variables are in upper-case.
The data structures for the task lists and procedures that manipu-
late the data structures are presented first, followed by descriptions of

miscellaneous procedures, and finally the system algorithm.

4.1 Data Structures

The data structures used in the virtual memory subsystem consists of

{
i

two types: lists of task descriptors and lists of page descriptors. The
lists of page descriptors have been described previously in the memory manage-
ment description (section 3.3). Task descriptors reside in main memory, and

consist of a block of words containing pointers to the previous and following h

58

tasks in the list, working set information, priority information, scheduling

information, a copy of the task's portion of the translation memory, a buffer

for its copy of the registers, a pointer to its set of active pages on the

page table list, and, if the task is blocked,a pointer to its set of locked-

in pages. There are five task lists, each paired with a hardware register

containing a pointer to the first task descriptor in the list and a count

of the number of task descriptors on the list:

(a)

()

read list (pointer register READYLIST). A doubly-linked list. of

tasks to be activated when space exists in memory for their work-
ing sets.

running list (pointer register RUNLIST). A circular, doubly-

linked list of tasks that are being processed in round-robin

fashion (i.e., active tasks).

(c) blocked 1list (pointer register BLOCKLIST). A doubly-linked list

of tasks awaiting completion of another task (e.g., an I/0 re-

quest).

(d) page wait list (pointer register PAGEWAIT). A queue of tasks

(e)

awaiting completion of a page write so that they may access
the page.

task complete list (pointer register COMPLETELIST). List of

complete tasks.

The CDL description of the pointer registers and subregisters appears below.

Comment, task descriptor list pointers

Register,

READYLIST(1-24), $ready list
RUNLIST(1-24), $running list
PAGEWAIT(1-24), $page wait list

BLOCKLIST(1_24), S$blocked list

59

COMPLETELIST (1~-24) $completed task list
Subregister, READYLIST(NUMBER,F)=READYLIST(1-8,9-24),
RUNLIST{(NUMBER,F)=RUNLIST(1-8,9-24),
PAGEWALT (NUMBER,F)=PAGEWAIT(1-8,9~24),
BLOCKLIST(NUMBER,F)=BLOCKLIST(1-8,9-24),
COMPLETELIST(NUMBER,F)=COMPLETELIST(1—8,9f24),
The page list pointers have a subregister NUMBER (e.g., READYLIST(NUMBER))
which contains a count of the number of entries on the list, and a subregis-
ter F (e.g., READYLIST(F)) which contains the physical address of the first task
descriptor on the list. The function procedures for accessing the contents
of these subregisters are shown in Table 4-1.
Rather than describe the format of ;he task descriptor block, a list
of its contents is shown in Table 4-2. The list consists‘of a function procedure
name with which to access a field of the tgsk block, the minimum size of the
field (in bits), and an explanation. These fields are concerned with timing

(active time, quantum, interval value), working set sizes (wssize, wsold), page

table lists (tasklist, lockedinlist), translation memory (tmcount, sact, swkey,

swp, sres, sblk, sdp), and task and page status (blkd, key, resident, first request,

desired virtual page). Two fields link the task to other tasks in the list (next—

task, previoustask).

All task lists are stored as circular, doubly-linked lists and are
thought of as queues (i.e., having a front and a back). The task list pointer

points to the front of the list and the previous task field of the first task

descriptor points to the back of the list. Four procedures (Procedures 4-1,
4-2, 4-3, 4~4) display procedures for operating on the task lists. Procedure
gettask (4-~1) detaches the first task descriptor from a specified list and re-
turns the address of the task descriptor. Procedure puttask (4-2) attaches

a specified task to the end of a specified list. Procedures getnexttask (4-3)

function CDL description explanation
number (t) t (NUMBER) number of entries in the task list‘
identified by register t¥*
f(t) t(F)

i
first task on the task list identi-

fied by register t*

*

t = READYLIST, RUNLIST, PAGEWAIT, BLOCKLIST, or
COMPLETELIST

Table 4~1 Function procedures for task list pointers

60

61

function procedure name :i:é explanation
(bits)

1) active time (T) - elapsed processing time since task was made active

2) quantum (T) - quantum of processing time allocated to the task
i 3) interval value- (T) i - § remaining time in the current burst interval
é 4) wssize (T) 6 f current working set size for task
% 5) wsold (T) 6 working set size at termination of last active period
§ 6) translation memory a set for each translation memory entry
? sact (P,T) 1 active flag I
% swlay(P,T) 4 page key ;
; swp (P,T) 1 write protect flag %> for virtual page P of task T ;
é sres(P,T) 1 resident flag ! |
i sblk(P,T) 6 memory page % ;
% sdp (P,T) 12 ! drum address .

7) tasklist (T) 12 é page list pointers for task T

8) desired virtual page (T)E 8 % most recently requested virtual page

9) locked in list (T) 12 é list pointers for pages locked-in during a process

i % block

©10) first request (T) 8 ; first virtual page necessary to activate task T
Ell) resident (T) 1 i flag signalling that the task is resident
112) key (T) 4 % page key for task T

13) blkd (T) . 1 % flag indicating the task has active pages but is
% é é suspended from processing awaiting a page or task .
% g § unblocking g
214) tmcount (T) ! 10 ; number of translation memory locations %
215) nexttask (T) 16 { next task in the list 5
| 16 previous task in the list

- 16) pervious task (T)

Table 4-2 Task field functions

62

points the tasklist pointer for a specified list at the next task in the task
list and returns the address of that task descriptor. Procedure detachtask

(4-4), detahces a specified task from a specified list.

4,2 Primitive Procedures and Global Variables

The hafdware components of the virtual memory system are presented
in section 3 in CDL. In order to make use of the hardware registers and micro-
instruction sequences presented there, suitable ALGOL counterparts are assigned.
Registers are defined as global variables, and appear in Table 4-~3. Micro-
instruction sequences are assigned procedures names, with most of the relevant
variables (registers) appearing as format parameters. Table 4-4 summarizes
those procedures previously defined. Subregisters are defined as function
procedures. A list of registers for which function procedures are defined
appears in Table 4-5.

In addition, there are a number of procedures that perform simple
functions that operate on the contents of main memory and use the procedures
defined in Table 4-4 or perform basic operations on pieces of hardware not
Aescribed completely (e.g., the interval timer) or perform necessary operations
that can be described without specifying detailed operation. These procedures

are listed in Table 4-6. Procedures gettask, puttask, getnexttask, and detach-

task were presented in section 4-1 and manipulate the task descriptors in the

various lists. Two procedures, load state vector (4-5) and unload state vec-

tor (4-6), load and unload a task's register set and translation memory. They
are each made up of two other procedures. Unloadtm (4-7) scans the translation
memory for entries that have been referenced and changes the corresponding page
descriptor and the task's copy of the entry to reflect the changes found in

the entry. It should be noted that this procedure in effect unloads the trans-

63

definition

i name

v o

v - et

TASK

SYST

READYLIST

RUNLIST

PAGEWAIT

BLOCKLIST

COMPLETELIST

INTERRUPT

PAGINT

PTRAN

TASKINT

PTR

TMR

LSP

LAVP

CAVPA

CAVPY

AVPC

AFLAG

WFLAG

MTKEY

address of descriptor block for current task

address of descriptor block for the residest system task
pointer to the list of tasks ready for activation
pointer to the list of active tasks

pointer to the list of tasks waiting for a page assignment

pointer to the list of tasks blocked, awaiting completion of another task’

pointer to the list of complete tasks

interrupt register

register that indicates the page which has just been swapped
register that indicates the type of swap which just occured
register that indicates the task that was just unblocked
page table descriptor register

trans l‘at ion memory buffer register

pointer to the list of pages that must be swapped out
pointer to the list of available pages

count of availabile pages

count of pages in LSP and LAVP

count of available pages not yet assigned to working sets
flag indicating a memory access error (illegal key)

flag indicating an attempt to write a read-only page

length of time allowed for one.burst of processing

working set parameter (in units of time)

value of protection key which indicates the page is outside program

limits

Table 4-3 Global variables

64

B procedure call description explanation
loadmm(i,j ,SBR) Table 3-1 load SBR from main memory page i,
word j
storemm(i,j,SBR) Table 3-1 store SBR to main memory page i,
| | word j i
loadtmr (i ,TMR) i Table 3-2 ’ load TMR from translation memory
i location i
storetmr (i ,TMR) Table 3-2 ‘ store TMR to translation memory

loadpagedescriptor (j,ptr)
storepagedescriptor(j,ptr)
putpt(p,ptl,ptr)

getpt(p,ptl,ptr)

detach(p,ptl,ptr)

queue request(p)

Figure 3-4(a)

Figure 3-4(b)

Figure 3-5(a)

Figure 3-5(b)

Figure 3-6

Figure 3-9

location 1
load ptr from the jth location of
the page table

store ptr to the jth location of

the page table

add the page descriptor at address
P to the page list ptl

detach the first page descriptor at

page list ptl, place address in p,

contents in ptr

detach the page descriptor at addres%
P from list ptl, leave contents in%

§

ptr |

queue page p for swapping

M e macmis smecticn s

Table 4-4. Summary of primitive procedure defined in section 3

65

i register location of field buffer name
descriptions
TMR Table 3-2 translation memory buffer
VAD Table 3-2 virtual address register
MADR1 Table 3-2 main memory address register
PTR Table 3-5 page table buffer (for CPU)
PTR2 Table 3-5 page table buffer (for paging channel)
PTLIST Table 3-5 page list pointer (for CPU)
LAVP Table 3-5 iist of available pages pointer
LSP Table 3-5 list of swappable pages register
& PTL Table 3-5 page list pointer (for paging channelf
Table 4-5 Summary of registers that are referenced by subregister name

66

procedure call description explanation
% gettask(T,LIST) procedure 4-1 removes the first task on list LIST, places
i address in T
puttask(T,LIST) procedure 4-2 places task T into ;ist LIST
getnexttask(T,LIST) procedure 4-3 moves list pointer LIST to point to the
% next task on the circular LIST, T<f(LIST)
detachtask(T,LIST) procedure 4-4 | detachtask T from list LIST
loadstatevector(TASK) procedure 4-5 load registers and translation memory for
: task TASK>
% unloadstatevector (TASK) procedure 4-6 unload and store Tegisters and translation
% memory for task TASK
% unloadtm(TASK) procedure 4-7 unload translation memory for task TASK
loadtm(TASK) procedure 4-8 load translation memory for task TASK
. store registers(TASK) * store registers for task T
restore regiéters(TASK) *

load registers for task T

*not defined

Table 4-6 Other primitive procedures

67

procedure call

definition

explanation

load interval timer (INTVAL)
store interval timer (INTVAL)
suspend interval timer

restore interval timer

cannabaldize (PAGE ,TASKLIST)

search ready list for task(T)

i
whose working set size(WSIZEi
!

-t

{
i
j |
i

is less than (AVPC). and notez

(FAILURE)

errorstop (TASK)

i

|

bos e

et s i i e

load interval timer with the value of
INTVAL

store the contents of the interval tim-
er into INTVAL

suspend the interval timer

restart tHe interval timer

TASKLIST is searched for the best can-—

didate for swapping, this page is de-

tached, its address placed in PAGE,
and the page is queued as available of
for swapping. CAVPA, CAVPV and AVPC

are adjusted.

the ready list is searched for the high-

est priority task T. If the working

size WSIZE is less than the available
page count AVPC, then FAILURE<(, else
FAILURE 1

processes address and hardware errors

*not defined

Table 4-6 (continued)

68

lation memory, while at the same time recording the page utilizaton. Loadtm
(4-8) loads the translation memory with a task's copy of the translation memory.
The entries for the pages that are not used are loaded with a key that will
generate an "exceeded bounds" fault if they are addressed. The procedures

store registers and load registers save a task's register set and restore the

task's registers, respectively. These procedures are not shown in any detail

for two reasons: all registers are not defined and the operation is obvious.
The interval timer is not described in any detail but plays an im-

portant role in the task scheduling implementation. Four procedures are pro-

vided to save and restore its contents (procedures store interval timer and

load interval timer, respectively) and to suspend and restore its operation

(suspend interval timer and restore interval timer, respectively).

Three procedures perform necessary tasks but are better left wvague un-
til the complete operating system is defined. Procedure cannabolize is a
special procedure that is used to select the best candidate for swapping from
a task's working set. It is only called when one task, other than the system
task, resides on the running list and no pages are available. The choice of

a best candidate is not simple. Procedure search ready list for task searches

the ready list for a task whose working set would fit into the available

space in memory. This requires knowleage of the priority algorithm, and as
determination of priority is a subject in itself, the details are not given
here. Procedure errorstop is defined as the system addressing error and hard-
ware error handler. Again, this is considered to be outside the range of this
paper and, therefore, details are not given.

All procedures defined above are called primitive procedures. Although

each may perform a complex task, the functions of each are self-contained.
Their definition as procedures will make the complete system description more

general.

69

4.3 Memory Management - Task Scheduling Algorithm

The memory management, task scheduling algorithm consists of three
parts: address translation, interrupt processing, and the system task.
Address translation occurs during the CPU's control (fetch-execute) cycle.

As the author wishes to avoid presentation of instruction formats, the details
of the control cycle will not be presented. It will be sufficient to state
that at some, possibly several, points in the control cycle instruction or
operand fetchs occur. A possible control cycle is shown in Figure 4~1 that
has cascading indirect addressing for operand fetch/store and an instruction
fetch.

Each address to the user’s virtual name space must be translated.

This address translation may be successful, may generate a pagefault, or may
generate an error. Figure 4-2 presents the flow chart for the major CPU

cycle (procedure 4-9). The control cycle appears as a procedure call. In this
procedure it is assumed that a request is made for address tramslation, to a
procedure called vmtranslate. Procedure vmtranslate (4~10) described in de-
tail later, performs the function of address tramslation.

If the reader refers back to Figure 2-4, the scheduling implementation
diagram, he can see that task scheduling is primarily interrupt driven. The
task is removed from the processor under one of five conditions: (a) after
an interrupt from the interval timer, (b) after a page fault, (c) after task
completion, (d) after blocking to await completion of another task, or (e) after
exceeding the working set size with no pages available (working set overflow).
All except the first may be considered to be generated by the task itself,
but they are interrupts to normal task execution. Any of these interrupts
cause task rotation or task deletion in the running list and possibly task

addition to the completed list, ready list, blocked list, or page wait list.

emrreas v A

fetch cyclel

<

i

nstruction has an no ,
operand address?

] yes

indexing?

| yes
W

indexing }

operation
. v ok

P
w3

%

%

operand address

interpretation

A
indirect
Lo Jes
addressing?

no ;(U SO —

N

execution

cycle

branch - yes
instruction?

no

%

instruction address

interpretation

Figure 4-1 A possible control cycle

70

start
1
instruction _— e - — - =3
fetch address
and i translation
execution ; (vmtranslate)
(control cycle) | l
(DU

* timer interrupt

remove task from

processing and

task unblocked

initiate next task

(interval timer interrupt)

remove task to await

wnblocking and

ask blocked
initiate next task

(block)

i

{ _page swapped in

place unblocked task
on ready list and
continue interrupted task

(blocked interrupt)

place task awaiting

page on running list and

task completed

continue interrupted task

(paging drum interrupt)

} addressed page

' _unavailable

remove task to
completed list and
initiate next task

(cempleted task)

remove task requesting -
page and initiate
next task

(dea.ct.ivate or suspend)

error M

process error and

continue

(errorstop)

Figure 4-2 Flow chart showing the functions

of the major CPU cycle

71

72

Tasks move from page wait to the running list after an interrupt from the
paging drum. Tasks leave the blocked list and move to the ready list after
an interrupt signals that block has been removed. Figure 4-2 shows that the
second part of the major CPU cycle consists of testing for and handling the
various interrupts.

In Fiéure 2-4, only one task movement remains, from the ready list to
the running list. This function is performed by the resident system task.
The resident system task performs a portioﬁ of the memory management task,
namely the monitoring and adjustment of the working sets. Therefore, only
the system task can recognize when space exists for activating a task and its
working set.

The remaining portion of section 4 presents the ALGOL procedural

descriptions of the address translation, interrupt handling, and system task.

MAJOR CPU CYCLE

The major CPU cycle (procedure 4-9) has been just outlined. It con-
sists of a program loop, apparently endless (system shutdown is left unde~-
fined). The control cycle is executed and re-~executed unless an interrupt
occurs (INTERRUPT#0). When an interrupt is recognized by the major CPU
cycle the interval timer is suspended, the interrupt is processed, the interval
timer is restored, and the cycle continues. There are ten possible interrupts
that can occur:

(a) interval timer, in which case procedure interval timer interrupt

(4-16) causes the task to be removed from processing;

(b) task blocked, in which case procedure block (4-20) places the

task on the blocked list;

(c¢) task unblocked, in which case procedure blocked interrupt (4-21)

places the task on the ready list;

(d)

(e)

(£)

(g)

(h)

&H)

(3

73

page interrupt, in which case procedure paging drum interrupt

(4-23) determines the action to be taken with the released page;

task completion, in which case procedure completed task (4-25)

deactivates the task to the completed task list;
page wait(l), in which case procedure deactivate (4-17) places
the task on the list PAGEWAIT;

working set overflow, in which case procedure deactivate (4-17)

places the task on the ready list;

page wait(2), in which case procedure suspend (4-26) removes the

task from the running list;

address fault, in which case procedure errorstop handles the

error;

drum page fault.

Several comments should be made at this point. In the above scheme, interrupts

a, b, e, £, g, h, and 1 must occur mutually exclusive of each other, as each

involves an action with the current task (and each changes the current task

pointer). In all other cases, some other uniquely specified task is involved.

For this réason, the following clarifications are made about the control

cycle operation:

(a)

(b)

(o)

the posting of interrupt b, e, £, g, h, or i cause the resetting
of the timer interrupt (off);

the timer interrupt will not be set while interrupt b, e, £, g,
h, or i are on;

once any of one of interrupts b, e, f, g, h, or i are set the
instruction counter is reset so that this instruction can be

re-executed and the rest of the control cycle is by-passed.

74

ADDRESS TRANSLATION

Each time the control cycle must translate an address from the vir-
tual name space to the physical name space it calls the procedure vmtranslate
(4-10) with the virtual page VP, the page word WORD, the read/write indicator
RWM, the word to be filled stored SBR, and the task identifier TASK as argu-
ments. The procedure loads variable TMR from the VP-th location of the trans-
lation memory.

If this page is active (act(TMR)=1), then the page is in memory and
attached to the task's working set. In this case the protection key and
write protect bit are checked to see if this is a proper fetch/store. If
so, the read (RWM=1l) or write (RWM=0) takes place and the "reference bit"
and, if a write was performed, the ''changed bit" for the page are turned on.
If an improper fetch/store was attempted then the access flag AFLAG and/or
the write protect flag WFLAG are set to 1, and the address fault interrupt is
posted.

If the page was not active, then the procedufe page fault (4-11) is
called. This procedure has as arguments the virtual page VP, physical page
PAGE, task descriptor éddress TASK, and copy of the translation memory location
(address VP) TMR. The first thing the procedure does is to assume that the
page is not in memory: the working set size for the task (wssize) is incre-
mented and the value of the interval timer is stored. Then it checks the

page table (procedure checkpagetable (4-12)) to see if the page indicated by

the translation memory address is in memory. If it finds it (SUCCESS=1) then
it replaces the task on the task's working set list (if it is in the user's
virtual memory) or the system task's working set list (if it is in the system's
virtual memory). In addition, it decrements the non-assigned page count

AVPC, the unattached page count CAVPV and, if the page was on the list of

75

available pages, the available page count CAVPA.
If the page was not found to be in memory then a page must be brought

into memory (procedure queue for input (4-13)). However, if no pages are

unattached (CAVPV=0), then the task is deactivated to the ready list unless
it is the only task other than the system task. In the latter case, the task
selects a suitable page for overlaying from its own working set (procedure
cannabolize (Table 4-6)) and queues the page for input.
This completes the description of procedure pagefault. It should be
noted that the three page counts are essential to the proper operation of
the algorithm. Counter AVPC represents the number of pages that have not been
assigned to active tasks. It is used solely to determine when other tasks
may be added to the rumming list. Counter CAVPA represents the number of pages
that are currently available for immediate overlay (i.e., the length of the
list of available pages). Counter CAVPV represents the number of pages in memory
not attached to working sets, either on the list of available pages (LAVP)
or on the list of swappable pages (LSP) or in the process of being swapped
out. This counter is used to determine if there are available pages to
assign. Especially notable is the fact that counter AVPC is signed (i.e.,
it can go'negative). This is due to the fact that during the first T seconds
of a task's active period the working set size is being re-evaluated. However, its
old working set size is reserved from the AVPC until it has been re-evaluated.
Therefore, the condition could arise when all pages are reserved according to AVPC
but not currently assigned according to LAVP. A task that wished to increase its
working set size at this point would be allowed to but would cause AVPC to go negative
Procedure pagefault called two procedures that have not previously been
described:

(a) Procedure checkpagetable (4~12). This procedure checks to see .if

the physical page that appeared in the addressed translation memory

76

location is still assigned to thatpage, although it is, not in

its working set (i.e., has not been reassigned). In addition it
makes certain that the page is not being swapped out (puse(PTR)=2)
and if not loads variable PTLIST with list pointer of the list

on which it resides (either the LAVP or the LSP).

(b) procedure queue for input (4-13). If the LAVP is not empty

(CAVPA#0), the first entry of the LAVP is queued for input (queue
request) and the suspension interrupt (susp(INTERRUPT)) is
posted. If it is empty, then the deactivate-to-the-page-wait-
list interrupt is set (deactpw). In either case, if the LSP

is not empty the first entry is queued for swap-out. This last

action assures that a new page will be added to the LAVP.

Procedure queue for input called procedure remove trace (4-14) before queueing

a page for input. This procedure removed any pointers to the physical page that
may have previously egisted in another task's translation memory. 1In addition
it called procedure load ptr (4-15) to load the page table with necessary
information about the page's new identity (protection key, write protect

bit, resident bit, task identity, virtual page, and drum address). It should
be noted that the task identity is either the user task (if P<511) or the system
task (if P>511). All active pages from the system virtual memory are

attached to the system task, allowing these pages to be shared by all user

tasks.
INTERVAL TIMER INTERRUPT

The interval timer is an automatic counter that is decremented by
a clock cyle. It is only in operation during the control cycle. When it
reaches zero, if no other interrupts have been posted that effect the current

task, then the interval timer interrupt is posted. The interval timer inter-

77

rupt is processed by procedure interval timer interrupt (4-16).

The procedure updates the active time count for the task by the burst
amount B. It resets the interval time for the task to B. If the acfive
time for the task is greater than or equal to the assigned quantum, the task
is deactivated to the ready list by procedure deactivate (4-17), else the next
task on the ruamning list is assigned the processor by procedure circulate
(4-19). If this marked the end of the task's first t (the working set para-
meter) seconds, then the available page count AVPC is adjusted to reflect
the true working set size (wssize) rather than the assigned working set
size (wsold).

(4-17) removes a task from the running list to

the specified task list. If the task is non-resident, it zeroes the active
time, stores the current working set size as wsold, releases the tasks pages

to the LAVP or ISP (procedure release page (4—38)), unloads the task's

state vector, and initiates the next task. If the task is resident, it
merely unloads the state vector and initiates the next task. The next state
is initiated by loading its state vector and the interval timer with the
new task's current timer value.

Procedure circulate (4-19) is called in order to rotate the circular
running list and initiates processing of the next task on the list. This
is accomplished by unloading the last task's state vector, rotating the list,

loading the new task's state vector and interval timer.

BLOCK AND UNBLOCKED INTERRUPT

A block interrupt is handled by the block procedure (4-20). It con-
sists of setting the task's interval time value to zero and deactivating the

task to the block list (procedure deactivate (4~17)).

78

An unblock interrupt is handled by the blocked interrupt procedure

(4-21). Posting of the unblock interrupt osly interrvupts the processing task,
it does not remove it from processing. Thervefore, the procedure must first
store the task's register set and, at the end of the procedure, restore the
register set. In between it releases the locked-in pages of task just un-
blocked and plates the task on the ready list.

A task that is blocked (procedure block) awaiting completion of another
task, must have already locked-in the pages that will be required by the task
(e.g., for a non-paged I/0, the block o be stored or loaded must be in
memory). Pages are locked-in by the procedure lockin (4-22) which removes the
pages from the task's active list and places them on the task’s locked-in

list.
PAGING DRUM INTERRUPT

The paging drum intervupt also interrupte & processing task temporar-
ily. Therefore, the procedure must store and restore the register set. The

procedure paging drum interrupt (4~23) handles the intevrupt. If the page for

%hich the interrupt was issued was swapped-in (PTRAN=1), then there is a task
awaiting the arrival of the page. This task iz placed back on the running
list, and the appropriate translation wmemory locsziion is loaded. 1If the page
was swapped—out, then it is addsd to the list of awvailsble pages. At this
point, if the page wait list ié not empty, then there was a task waiting for
that physical page. In this case, the virtusl page the task desires is
restored and queued for input (procedure gysus for luput (4-13)).

Procedure get tm entyy loads the trsaslation wewmory location that

will reference the page just rzad in. The task’s translation memory copy is
P y cop

D=

changed to reflect the new ctatuz of the page. The procedure sets the active

bit and stores the physical page address in the entry.

79

COMPLETED TASK INTERRUPT

Procedure completed task (4-25) handles the completed task interrupt

by deactivating the task to the completed task list (procedure deactivate

(4-17)).
DEACTIVATE TO PAGEWALIT AND READY LIST INTERRUPTS

These interrupts are posted when a page fault occurs. If the task
cannot immediately be assigned a page for swap-in, it is deactivated to the
page wait list to await a page. If the task has exceeded its working set
size and no pages are available (AVPC=0) then the task is deactivated to the

ready list. Both interrupts are handled by procedure deactivate (4-17).
SUSPEND TASK INTERRUPT

The suspend task interrupt is posted when a task must await the
swapping-in of a page. The procedure suspend (4-26) handles the interrupt by
removing the task from the running list, storing its state vector, and
initiating the next task on the running list. As the page table entry
corresponding to the page being swapped in contains the task descriptor

address, the task descriptor does not have to be attached to any list.

SYSTEM TASK

Procedure system task (4-27) performs the major portion of the memory
management. It scans the page table for non-resident pages that have not
been referenced in the last T second (util(PTR)>71). If it finds any, it
detaches the page from the tasklist it is on, reduces the working set size of
the task that it was attached to, and releases the page (procedure release
page (4-18)). The procedure then searches the ready list for tasks whose

working set will fit., If it finds any, it removes them from the ready 1list,

80

finds the first page necessary for their procsesing, and queues this page for

input.
NON-PAGED INPUT/OUTPUT

The problem of non-paged input/output will only be briefly be con-
sidered here. The problem manifests itself when an I/0 command is given that
involves the transfer of a block of words, the addresses of which include
one or more page boundaries. As the pages would not be expected to be
physically contiguous, the I/0 channel must either use virtual addresses
(requiring the task's tramslation table to access the pages) or it must avoid
transfers of blocks of information that cross page boundaries. This latter
method is adopted in many paging systems (e.g., RCA Spectra 70/46 and 70/61).
However, the former method is more elegant in that it follows the virtual
memory philosophy.

Without going into too much detail, this may be effected with an I/d
channel that itself had a translation memory and the capability of demand
paging. Only the first page would be locked—in core and as others would be
}equired they could be paged on demand. The channel would suspend I/0 for
that task and begin I/0 for another while the page was being swapped-in.
However, if this method was used then the memory management subsystem would
have to be revised to satisfy the added complications (i.e., tasks blocked

for 1/0 would have active working sets).
FUNCTIONAL RELATIONSHIP

Figure 4~3 shows the functionasl relationships between the procedures.
The major procedures appear on the left while the procedures that perform

simple functions appear on the right. It should be noted that the references

contrel eycle « . .

interrupt testing .

vmtranslate « o o o 4 6 v e e o o8 o

« pagefault.

.

interval timer interrupt.deactivate

.circulate

block « + « « « « « . « .deactivate*

blocked interrupt + . « « « « ¢ . .

paging drum interrupt . . . ¢ . . .

completed task deactivate*

deactivate®

suspend. + o « 4 0 . 2 oo s e e e o4 .

ErICIBLOP =« + « o + o o

Figure 4~3 Functional relationship between procedures

check page table « ¢ « « ¢ ¢« ¢ o o &
{not defined)

queue for imput

cannabalize . .

.remove trace . . .

L S T T

. .unload state.vector.

. .load state vector.
.release page . . .+ .+ o . . 4 ..o

.unload state

.load state vector*

.release page*

s s s s v s . . . sEt tm

entry

(not defined)

vector¥

.

81

loadtmr

loadmm

addressfault (INTERRUPT) 1

storemm

storetar

store interval timer
detachpt

putpt

storetmr

deactrl (INTERRUPT) <1

load page descriptor

getpt
loadptr
queue. request

store page descriptor

deactpw (INTERRUPT) 1
susp (INTERRUPT) +1
« s+ s e e s e s s = » loadtmr
storetnr
“ e s e« s e« o+« o detachpt
load interval timer
get task
put task
éec nexg ﬁask

.store régisters
storetm

.load registers
loadtm

e s ¢ s+ « 4 s .+ . putpt

load interval timer

get next task

e e« s s s o+ o o+ . detachpt
store registers
detach task

put task

restore registers

« « s » s o = o« » « load page descriptor
putpt

.store registers

put task

get task

restore registers

e o s s o s o s+ » « o« load interval timer
get task
unload state vector

load state vector

% defined above

form a tree structure, with the only circularity at the top level (the left-
hand side).

This completes the presentation of the virtual memory system.

82

procedure gettask (T,LIST);

integer T,LIST;

begin comment remove the first task descriptor on list LIST and place the

address in T;
integer TSK;
T<£ (LIST) ;
number (LIST)<number (LIST)~-1;
if number(LIST)=0 then f£(LIST)=0
else
begin f(LIST)+nexttask(T);
TSK<f (LIST) ;
previous task(TSK)<previous task(T):
TSK+previous task(T):
nexttask (TSK)<nexttask(T)
end

end gettask

Procedure 4-1. gettask

83

procedure puttask (T,LIST);

integer T,LIST;

begin comment place task T in list LIST;

integer TSK
if £(LIST)=0 then
begin £ (LIST)<T;
nexttask(T)<T;
previous task(T)<T;
end
else
begin TSK¢previous task(f(LIST));
previous task(£(LIST))<T;
previous task(T)<TSK;
nexttask(T)<£(LIST) ;
nexttask (TSK)«T;
end;
number (LIST) number (LIST)+1

end puttask

Procedure 4-2. puttask

84

procedure

begin

85

getnexttask (T,LIST);

integer T,LIST;

end

comment the circular list LIST is circulated one position (the
head becomes the tail) and the address of the new task
descriptor is placed in T;

T<nexttask(£(LIST)):

f(LIST)«T

Procedure 4~3. getnexttask

procedure detachtask(T,LIST);

integer T,LIST;

begin comment task descriptor T is removed from list LIST;

integer TSK;

TSK<«previoustask(T) ;

nexttask (TSK)<nexttask(T) ;

TSK<nexttask(T) ;

previoustask(TSK)<«previoustask(T);

number (LIST)<number (LIST)-1;

if £(LIST)=T then
begin if number(LIST)=0 then £(LIST)«0

else f(LIST)«TSK

end

end detachtask

Procedure 4~4, detachtask

86

procedure

begin

end

procedure

begin

load state vector(TASK)

integer TASK;

comment load all registers and translation memory for task TASK;
restore registers(TASK)
loadtm(TASK)

load state vector

Procedure 4~5. 1load state vector

unload state vector (TASK) ;

integer TASK

end

comment unload all registers and those altered translation
memory locations for task TASK;

store registers (TASK) ;

storetm(TASK)

unload state vector

Procedure 4-6. unload state vector

87

88

procedure store tm(TASK)
integer TASK; global TMR,PTIR;

begin comment unload those translation memory locations that have been

referenced to task TASK's storage area;
ipteger 1I;
for I=0 step 1 until tmcount(TASK)-1 do
begin loadtmr(I,TMR);
if (ref(TMR)=1) then
begin loadpagedescriptor(blk(TMR),PTR) ;
util(PTR)<0;
if chgd(TMR)=1 then chge(PTR)<+1;
store page descriptor (blk(TMR),PTR);
sact (I,TASK)«act(TMR) ;
sblk(I,TASK)<b1k(TMR)
end"
end

end store tm

Procedure 4-7 store tm

procedure loadtm(TASK) ;
integer TASK; pglobal MTKEY,TMR;

begin comment load task TASK's copy of the translation memory;

integer 1I;

for I=0 step 1 until tmcount(TASK)-1 do

begin act(TMR)+sact(I,TASK);
ref (TMR)<0;
chgd (TMR)<0;
wp (TMR)<swp (I,TASK) ;
wkey (IMR)<swkey (I, TASK) ;
res (TMR)<sres (I,TASK) ;
blk (TMR)<sblk (I,TASK);
storetmr (I,TMR)

end

for I=tmcount(TASK) step 1 until 511 do

begin wkey (TMR)<MTKEY ;
act (TMR)<1;
storetmr (I, TMR)
end

end loadtm

Procedure 4-8. loadtm

89

begin

MAIN:

end

comment major CPU cycle; 90

integer TASK,READYLIST,RUNLIST PAGEWAIT,BLOCKLIST,COMPLETELIST,INTERRUPT,

PAGINT ,PTRAN,TASKINT ,PTR ,TMR ;LSP ,LAVP ,CAVPV ,CAVPA ,AVPC ,AFLAG ,WELAG,

SYST,B ,T ,MTKEY ;

controlecycle(TASK); if INTERRUPT=0 then go to MAIN;

suspend interval timer;

timer (INTERRUPT) then

begin timer (INTERRUPT)+0; interval timer interrupt(TASK) end;
blocked (INTERRUPT) then

begin blocked(INTERRUPT)<0; block (TASK) end;

unblocked (INTERRUPT) then

begin unblocked(INTERRUPT)<+0; blocked interrupt (TASK,TASKINT) end;
page(INTERRUPT) then

begin page(INTERRUPT)<0; paging drum interrupt (PTRAN,PAGINT,TASK)
end;

complete (INTERRUPT) then

begin complete(INTERRUPT)<0; completed task(TASK) end;

deactpw (INTERRUPT) then

begin deactpw(INTERRUPT)«0; deactivate(TASK,PAGEWAIT)end;

deact rl (INTERRUPT) then

begin deactrl(INTERRUPT)*O; deactivate(TASK,READYLIST) end;

susp (INTERRUPT) then

begin susp(INTERRUPT)+0: suspend(TASK)end;

addressfault (INTERRUPT) then

begin er;corstop(TASK) end;

drumpage (INTERRUPT) then

begin errorstop(TASK) end;

restore interval timer:

go to MAIN

Procedure 4-8 Major CPU Cycle

procedure vmtranslate (VP,WORD,RWM,SBR,TASK) ;
integer VP,WORD,SBR,TASK; boolean RWM; global AFLAG,WFLAG;

begin comment virtual memory addressing sequence:

integelt TMR;
loadtmr (VP ,TMR) ;
if (act(TMR)=1) then &
begin if (wkey (TMR)=key(TASK))A =wp(TMR)VRWM)
then
begin ref(TMR)<1;
if RWM then loadmm(blk(TMR),WORD,SER)
else

begin storemm(blk(TMR) ,WORD,SBR) ;

chgd (TMR) <1
end;
storetmr (VP,TMR)
end
else

begin AFLAG+(wkey (TMR)+#key (TASK)) ;
WFLAG<wp (TMR)ARWM ;
addressfault (INTERRUPT)~<1;
end
end
else pagefault(VP,blk(TMR) ,TASK,TMR)

end vmtranslate

Procedure 4-10 wvmtranslate

91

procedure

begin

pagefault (P,PAGE ,TASK,TMR) ; 92
integer P,PAGE,TASK,TMR; global PTR,LAVP,SYST,CAVPA,CAVPV,READYLIST,RUNLIST;

comment This procedure is called when virtual page P is not found in the work-

ing set of task TASK. In this case, the procedure checks to see if the page
PAGE resides in main memory from an earlier request and, if so, attaches it
to the working set and sets FLAG to 1. Otherwise, a page request is made
and the task is made to wait while the page is swapped in;
integer SUCCESS,PTLIST;
wssize (TASK)<+wssize (TASK)+1; store interval timer(interval value(TASK));
if PAGE#0 then checkpagetable (PAGE,P ,TASK,PTLIST,SUCCESS) ;
if SUCCESS=1 then
begin SUCCESS<0; detachpt(PAGE,PTLIST,PTR); AVPC.AVPC-1;
if PTLIST=LAVP then CAVPA<CAVPA-1; CAVPV«CAVPV-1;
if P>511 then putpt(PAGE,tasklist(SYST),PTR);
_else putpt(PAGE,tasklist(TASK),PTR);
act (TMR)<l;:storetmr(P,TMR)
end
else
begin if CAVPV=0 then
begin if number (RUNLIST)<2 then
begin cannabolize (PAGE,tasklist(TASK));

wssize (TASK)«wssize (TASK) -1

else deactrl(INTERRUPT)<«1
end
if INTERRUPT#0 then
begin queue for input(TASK,P);
CAVPV«CAVPV-1; AVPC«AVPC-1
end

end

end pagefault

Procedure 4-11 pagefault

procedure checkpagetable (B,VP,T,PTLIST,S);

integer B8,VP,T,PTLIST,S; global PTIR;

93

begin comment 1if page table location B corresponds to virtuwal page VP

of task T and it is not being swapped out, then the list

head of the list it is on is stored in PTLIST, and S is

set to 1, else S is set to 0;
loadpagedescriptor(B,PTR);
if (VP<511)A(puse(PTR)#2) then
begin if (VP=vp(PTR))A(T=tid(PTR)) then
else
end
else if (VP=vp(PTR) then S+l
else S<«0;
if S=1 then
begin if puse(PTR)=1 then PTLIST<LSP
else PTLIST<LAVP
end

end checkpagetable

Procedure 4-12 checkpagetable

5«1

5«0

94

procedure queue for input (TASK,P):
integer P,TASK; global CAVPA,LAVP,PTR,LSP,SYST;
begin comment this procedure queues page P of task TASK for input from the
drum and writes a page to drum if one is available;

if p>511 then TSK<SYST else TSK<TASK;

=
Fh

CAVPA#0 then
begin getpt(PAGE,LAVP,PTR); CAVPA<CAVPA-1;
removetrace(vp (PTR), tid(PTR,TASK)) ;
load ptr(0,0,0,swkey(P,TASK),swp (P,TASK),0,sres(P,TASK),
0,TSK,P,sdp(P,TASK),0) :
store page descriptor(PAGE,PTR);
queue request(PAGE);
susp (INTERRUPT) <1
end
else
begin deactpw{INTERRUPT)<L;
desired virtual page(TASK)+P
end;
if fp(LSP)#Othen
begin getpt(PAGE,LSP,PTR); row(PTR)<l;
store page descriptor (PAGE,PTR); queue request (PAGE)
end

end queuve for input

Procedure 4-13 queue for input

procedure

begin

95

remove trace(P,TSK,TASK) ;
integer P,TSK,TASK; global TMR;

comment remove any pointers to physical page P from task TSK

end

so that task TASK may make use of it;
if TSK=TASK then
begin loadtmr(P,TMR) ;
b1k (TMR)<0;
storetmr (P, TMR)
end;

sb1k (P ,TSK)«0

Procedure 4-14 remove trace

96

gocedure load ptr(PUSE,LB,LF,WKEY,WP,CHGE,RES, UTIL,TID,VP,DP,ROW) ;
integer PUSE,LB,LF,WKEY,WP,CHGE,RES, UTIL,TID,VP,DP,ROW; global PTR;

begin comment this procedure loads the page table buffer register PTR;

puse (PTR)<PUSE;
1b (PTR)<LB ;
LE£(PTR)«LF;
wkey (PTR)<WKEY ;
wp(PIR)<WP;
chge(PTR)<CHGE ;
res (PTR)<RES;
uti1(PTR)<UTIL;
tid(PTR)<«TID;
vp(PTR)<VP;
dp(PTR)<DP;

row (PTR) <ROW

end loadptr

Procedure 4-15 1load ptr

97

procedure interval timer interrupt (TASK):

integer TASK; global R,READYLIST,t,AVPC;

begin €omment procedure to handle interval timer interrupts: test

for quantum overflow and access next task on the run-

ning list;
integer TACTIVES
TACTIVE<«activetime(TASK)+B8; interval value(TASK)<f:
activetime (TASK)<TACTIVE;
if TACTIVE>quantum(TASK) then deactivate(TASK,READYLIST)
else
begin if (TACTIVE <r+g)A(TACTIVE>T) then
AVPC«AVPC+wsold (TASK) -wssize (TASK) ;
circulate(TASK)
end

end interval timer interrupt

Procedure 4-16 dinterval timer interrupt

98

procedure deactivate(TASK,LIST);
integer TASK,LIST; global RUNLIST;

begin comment this procedure removes task TASK from list RUNLIST and places it

on list LIST;
integer TASKLIST,NEXTPAGE,I,PTR?TACTIVE;
TACTIVEtactivetime(TASK) ; activetime(TASK)<0:
TASKLIST<«tasklist (TASK) ;
if resident(TASK)=0 then
begin if (TACTIVE>T)/A(wsold(TASK)<wssize(TASK))then wsold(TASK)«wssize
(TASK) ;
wssize (TASK)«0; NEXTPAGE«fp(TASKLIST);
for TI<NEXTPAGE until NEXTPAGE=0 do
begin detach pt(I,TASKLIST,PTR);
release page(I,PTR);
NEXTPAGE<Lf (PTR) end;
gettask (TASK,RUNLIST) ;
puttask(TASK,LIST) ;
unload state vector(TASK):
TASK«f (RUNLIST)
end
else
begin unload state vector(TASK);
get next task(TASK,RUNLIST)
end;
tasklist (TASK)<TASKLIST;
load state vector(TASK); load interval timer(interval value(TASK))

end deactivate

Procedure 4-17 deactivate

99

procedure release page(I,PTR);
integer I,PTR; global LSP,LAVP,CAVPA,CAVPV AVPC;

begin comment this procedure releases page I {the contents of which are in PTR)

to either the list of available pages or the list of
swappable pages;
if chge(PTR)=1 then putpt(i,LSP)

else

begin putpt(i,LAVP);
CAVP A+CAVPA+1
end;
CAVPV«CAVPV+1;
AVPC+AVPC+1

end release page

Procedure 4-18 release page

100

procedure circulate(TASK);
integer TASK; global RUNLIST;

begin comment initialize processing of the next task in the running

list;
unload state vector(TASK);
get next task(TASK,RUNLIST);
load state vector (TASK);
load interval timer (interval value(TASK))

end circulate

Procedure 4-19 ¢irculate

101

procedure block (TASK); comment task must lock pages in memory before blocking;
integer TASK; global BLOCKLIST;

begin comment this procedure places task TASK on the blocked list;

interval value(TASK)<0:
deactivate (TASK,BLOCKLIST)
end block-
Procedure 4-20 blocked

procedure blocked interrupt(TASK,TASKINT) ;

integer TASK;

begin comment this procedure interrupts task TASK to release task TASKINT from

the blocked list to the ready list;
integer PTLIST,I,STORE;
store registers(TASK): STORE<TASK; TASK<«TASKINT,
PTLIST<«locked in 1ist(TASK);
NEXTPAGE<«fp (PTLIST) ;
for - I+NEXTPAGE until NEXTPAGE=0 do
begin detachpt(I,PTLIST,PTR);
releasepage(I,PTR);
NEXTIPAGE<1f (PTR)
end
detachtask (TASK,BLOCKLIST) ;
puttask (TASK,READYLIST) ; TASK«STORE;
restore registers (TASK)

end blocked interrupt

Procedure 4-21 blocked interrupt

102

procedure lockin (PAGE,TASK);
integer PAGE,TASK; global TASKLIST;

begin comment add page descriptor PAGE to the list of locked-in

pages for task TASK;
TASKLIST<tasklist (TASK);
detachpt (PAGE,TASKLIST ,PTR) ;
tasklist (TASK)<TASKLIST;
TASKLIST<lockedin list(TASK):
putpt (PAGE, TASKLIST,PTR) ;
lockedin 1list (TASK)+TASKLIST

end

Procedure 4-22 1lockin

103

procedure paging drum interrupt (PTRAN,PAGE ,TASK);
integer PTRAN,PAGE,TASK; global PAGEWAIT,RUNLIST,LAVP,CAVPA;

begin comment when the paging drum signals completion of a sector revolution it

sets PTRAN, indicates the page transferred as PAGE, and interrupts task TASK.
This procedure then issues the next page request and reactivates the waiting
task;
integer PTR,TSK,VP;
store registers(TASK);
if PTRAN=1 then

begin 1load page descriptor(PAGE,PTR); settmentry(PAGE,PTR);.

putpt(PAGE,tasklist (tid(PTR)):PTR) ;

puttask (tid (PTR) ,RUNLIST)

if PTRAN=2 then
begin " putpt (PAGE,LAVP,PTR) ;
CAVPA<CAVPA+] ;
if f(PAGEWAIT)#0 then
begin gettask(TSK,PAGEWAIT);
VP<+desired virtual page(TSK):
queue for input(TSK,VP)
end
end;
restore registérs(TASK)

end paging drum interrupt

Procedure 4-23 paging drum interrupt

104

procedure set tm entry(PAGE,PTR);
integer PAGE,PTR;

begin comment load the translation memory location that will address

the page PAGE;
integer VP,TSK;
VP<+vp(PTR) ;
TSK«tid(PIR) ;
sact(VP,TSK)<«1;
sb1lk (VP ,TSK)<PAGE

end set tm entry

Procedure 4-24 set tm entry

105

procedure completed task(TASK);
integer TASK; global COMPLETELIST;

begin comment this procedure places task TASK in the completed task list;

deactivate(TASK,COMPLETELIST)

end completed task

Procedure 4-25 completed task

106

procedure suspend(TASK);
integer TASK; global RUNLIST;

begin comment suspend task TASK by removing it from the running list

and initiate the next task on the running list;
gettask (TASK,RUNLIST);
unloadstate vector(TASK) ;
TASK<£ (RUNLIST) ;
load state vector(TASK);
load interval timer (interval value(TASK))

end suspend

Procedure 4-26 suspend

107

begin comment a portion of the resident system program (always in the RUNLIST);

integer I,PTR,INTVAL,WSIZE,FAILURE,VP,TSK;
global TASK,T,AVPC,READYLIST;
for 1«0 step 1 until 63 do
begin 1load page descriptor(I,PIR);
if (use(PTR)=0)A(blkd(tid(PTR))#0) then
begin util(PTR)<«util(PTR)+interval value(TASK);
if (util(PTR)>71)A (res(PTR)#1) then
begin wssize(tid(PTR))«wssize(tid(PTR))~1;
detachpt (I,tasklist(tid(PTR)),PTR);
releasepage (I,PTR)
end;
store page descriptor(I,PIR)
end
end
LOOP: WSIZE«Q; FAILURE<O;
for AVPC<AVPC-WSIZE while FATILURE=0 do
begin search ready list for task(TSK) whose working set size(WSIZE)
is less than(AVPC) and note(FAILURE) ;
if FAILURE=0 then
begin VP«first request(TSK); detachtask(TSK,READYLIST) ;
queue for input (TSK,VP)
end
end-
if number (RUNLIST)=1 then go to LOOP

end systemtask

Procedure 4-27 system task

108

5. DISCUSSION

The aim of this paper is to present a detailed algorithm of a memory
management system, the major components of which could be microprogrammed.
This goal seems reasonable in that the bulk of the procedures described handle
addressing and interrupts. Only the system task would necessarily be in
software and tﬁat could be one special instruction that would initiate the
appropriate micro subroutine.

However, the author would suggest that the algorithm first be simu-
lated in its present form to check for logical flaws and to attempt to dis-
cover the pefformance of the memory management subsystem under random con-
ditions. This simulation may demonstrate a need to modify the algorithm.

Once the algorithm has been simulated in this manner, microprogramming
by CDL and simulation by the CDL simulator will allow the system overhead to .

be calculated. At this point evaluation of the system could be undertaken.

10.

11.

12.

13.

14,

15.

16.

17.

109

6. REFERENCES

Abate, Joseph and Harvey Dubmner, "Optimizing the Performance of a Drum-Like
Storage," IEEETC, November 1969, pp. 992-997.

Belady, L.A., "A Study of Replacement Algorithms for a Virtual Storage
Computer,”" IBM Systems Journal, Vol. 5, No. 2 (1966), pp. 78-101.

Brotherton, D. and S. Domchick, Preliminary Programming Manual for RADC
2048-Word Associative Memory, Goodyear Aerospace Corporation (Akron, Ohio:
1966).

Chu, Yaohan, "Direct Execution of Programs in Floating Code by Address
Interpretation,' IEEETEGC, June 1965, pp. 417-444.

Chu, Yaochan, "An ALGOL-like Computer Design Language," CACM, February 1966,
pp. 72-76.

Chu, Yaohan, Introduction to Computer Organization, Prentice-Hall, 1970.

Chu, Yaohan, O.R. Pardo, and Yeh, Jeffrey, "A Methodology for Unified
Hardware-Software Design," Technical Report 70-107, Computer Science
Center, University of Maryland.

Coffman, E.G., Jr., "Analysis of a Drum Input/Output Queue Under Scheduled
Operation in a Paged Computer System,” Journal ACM, January 1969, pp. 73-90.

Coffman, E.G., and L. C. Varian, "Further Experimental Data on the Behavior
of Programs in a Paging Environment,'" CACM, July 1968, pp. 471-474.

Corbato, F.J. and Saltzer, J.H., "Some Considerations of Supervisor Pro-
gram Design for Multiplexed Computer Systems," Proceedings of IFIPS,
pp. 66-71.

Daley, Robert C. and Jack B. Dennis, "Virtual Memory, Processes, and Sharing
in MULTICS," CACM, May 1968, pp. 306-312.

Denning, Peter J., "The Working Set Model for Program Behavior," CACM, May
1968, pp. 323-333.

Denning, Peter J., "Virtual Memory', Princeton University, Computer Science
Laboratory, Tech. Report 81 (January 1970).

Denning, "Effects on Scheduling in File Memory Operations," Proceeding
ACM 22nd National Meeting, 1967, pp. 9-21.

Dijkstra, E.W., "Solution of a Problem in Concurrent Programming Control,"
CACM, September 1965, pp. 569.

Dijkstra, Edsger W., "The Structure of the 'THE' - Multiprogramming
System," CACM, May 1968, pp. 341-346.

Falkoff, A.D., "Algorithms for Parallel-Search Memories," JACM, Vol. 9,
No. 4 (October, 1962) pp. 488-511.

18.

19.

20.
21.

22.

23.
24,
25,
26.
27.
28.
29.
30.
31.

32.

33.

110

Gibson, Charles T., "Time Sharing in the IBM System/360 Model 67,"
Proceedings ACM 21st National Meeting, 1966, pp. 61-78.

Hellerman, H. and Smith, H.J., Jr., "Throughput Analysis of Some Idealized
Input, Output, and Compute Overlap Configurations," Computing Surveys,
June 1970, pp. 111-118.

IBM System/360 Model 67 Functional Characteristics, IBM Systems Reference
Library, File No. $360-01 (Form GA27-2719-1).

Iliffe, J.K. and Jodeit, Jane G., "A Dynamic Storage Allocation Scheme ,"
Computer Journal, October 18962, pp. 200~209.

Jacobson, David, "A Self Organizing Drum,'" IEEETEC, June 1964, pp. 302.

Jones, Robert M., "Factors Affecting the Efficiency of a Virtual Memory,"
IEEETC, November 1969, pp. 1004-1008.

Oppenheimer, G. and Weizer, N., "Resource Management for a Medium Scale
Time—Sharing Operating System," CACM, May 1968, pp. 313-322.

Ramamoorthy, C.V. and K.M. Chandy, "Optimization of Memory Hierarchies in
Multi programmed Systems,' Journal of ACM, July 1970, pp. 426-445.

Randell, B. and Kuehner, C.J., "Dynamic Storage Allocation Systems,"
CACM, May 1968, pp. 297-306.

Randell, B., "A Note on Storage Fragmentation and Program Segmentation,"
CACM, July 1969, pp. 365-369.

Smith, John L. "Multiprogramming under a Page in Demand Strategy,"
CACM, October 1967, pp. 636-646.

Spectra 70: 70/61 Processor Reference Manual, RCA Information Systems
(Camden, New Jersey: October 1969).

Wallace, V.L., and D.L. Mason, '"Degree of Multiprogramming in Page-on—Demand
Systems ," CACM, June 1969, pp. 305-308.

Weingarten, Allen, "The Eschenbach Drum Scheme," CACM, July 1966, pp.
509-512.

Weizer, Norman and Oppenheimer, G., "Virtual Memory Mangement in a

Paging Environment, Proceedings ACM 24nd National Meeting, 1969, pp.
249-256.

Wirth, Niklaus, "On Multiprogramming, Machine Coding, and Computer Organ-
ization," CACM, September 1969, pp. 489-498.

